[English] 日本語
Yorodumi
- EMDB-23812: Structure of the apo phosphoinositide 3-kinase p110 gamma (PIK3CG... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-23812
TitleStructure of the apo phosphoinositide 3-kinase p110 gamma (PIK3CG) p101 (PIK3R5) complex
Map data
Sample
  • Complex: Complex of p110 gamma with p101
Function / homology
Function and homology information


: / negative regulation of triglyceride catabolic process / secretory granule localization / natural killer cell chemotaxis / neutrophil extravasation / phosphatidylinositol-4-phosphate 3-kinase / positive regulation of acute inflammatory response / respiratory burst involved in defense response / negative regulation of cardiac muscle contraction / 1-phosphatidylinositol-3-kinase regulator activity ...: / negative regulation of triglyceride catabolic process / secretory granule localization / natural killer cell chemotaxis / neutrophil extravasation / phosphatidylinositol-4-phosphate 3-kinase / positive regulation of acute inflammatory response / respiratory burst involved in defense response / negative regulation of cardiac muscle contraction / 1-phosphatidylinositol-3-kinase regulator activity / regulation of calcium ion transmembrane transport / T cell chemotaxis / negative regulation of fibroblast apoptotic process / phosphatidylinositol 3-kinase complex, class IB / sphingosine-1-phosphate receptor signaling pathway / phosphatidylinositol 3-kinase complex, class IA / phosphatidylinositol 3-kinase complex / dendritic cell chemotaxis / 1-phosphatidylinositol-4-phosphate 3-kinase activity / 1-phosphatidylinositol-4,5-bisphosphate 3-kinase activity / phosphatidylinositol-4,5-bisphosphate 3-kinase / phosphatidylinositol 3-kinase / phosphatidylinositol-3-phosphate biosynthetic process / 1-phosphatidylinositol-3-kinase activity / mast cell degranulation / Erythropoietin activates Phosphoinositide-3-kinase (PI3K) / hepatocyte apoptotic process / positive regulation of Rac protein signal transduction / regulation of cell adhesion mediated by integrin / phosphatidylinositol-mediated signaling / Synthesis of PIPs at the plasma membrane / phosphatidylinositol phosphate biosynthetic process / centriolar satellite / regulation of angiogenesis / phosphorylation / T cell proliferation / cellular response to cAMP / GPVI-mediated activation cascade / neutrophil chemotaxis / ephrin receptor binding / phosphatidylinositol 3-kinase/protein kinase B signal transduction / positive regulation of endothelial cell migration / T cell activation / positive regulation of cytokine production / positive regulation of MAP kinase activity / G-protein beta/gamma-subunit complex binding / platelet aggregation / endocytosis / G beta:gamma signalling through PI3Kgamma / kinase activity / phospholipase C-activating G protein-coupled receptor signaling pathway / positive regulation of cytosolic calcium ion concentration / angiogenesis / adaptive immune response / positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transduction / non-specific serine/threonine protein kinase / protein kinase activity / inflammatory response / immune response / G protein-coupled receptor signaling pathway / innate immune response / protein serine kinase activity / protein serine/threonine kinase activity / ATP binding / identical protein binding / membrane / nucleus / plasma membrane / cytosol / cytoplasm
Similarity search - Function
Phosphoinositide 3-kinase regulatory subunit 5/6 / Phosphoinositide 3-kinase gamma adapter protein p101 subunit / PIK3 catalytic subunit gamma, adaptor-binding domain / PIK3 catalytic subunit gamma adaptor-binding domain / Phosphatidylinositol 3-kinase, adaptor-binding domain / Phosphatidylinositol 3-kinase adaptor-binding (PI3K ABD) domain profile. / PI3-kinase family, Ras-binding domain / Phosphatidylinositol 3-kinase Ras-binding (PI3K RBD) domain / PI3-kinase family, ras-binding domain / Phosphatidylinositol 3-kinase Ras-binding (PI3K RBD) domain profile. ...Phosphoinositide 3-kinase regulatory subunit 5/6 / Phosphoinositide 3-kinase gamma adapter protein p101 subunit / PIK3 catalytic subunit gamma, adaptor-binding domain / PIK3 catalytic subunit gamma adaptor-binding domain / Phosphatidylinositol 3-kinase, adaptor-binding domain / Phosphatidylinositol 3-kinase adaptor-binding (PI3K ABD) domain profile. / PI3-kinase family, Ras-binding domain / Phosphatidylinositol 3-kinase Ras-binding (PI3K RBD) domain / PI3-kinase family, ras-binding domain / Phosphatidylinositol 3-kinase Ras-binding (PI3K RBD) domain profile. / C2 phosphatidylinositol 3-kinase-type domain / Phosphoinositide 3-kinase C2 / C2 phosphatidylinositol 3-kinase (PI3K)-type domain profile. / Phosphoinositide 3-kinase, region postulated to contain C2 domain / Phosphoinositide 3-kinase family, accessory domain (PIK domain) / Phosphoinositide 3-kinase family, accessory domain (PIK domain) / Phosphoinositide 3-kinase, accessory (PIK) domain superfamily / Phosphoinositide 3-kinase, accessory (PIK) domain / Phosphatidylinositol kinase / PIK helical domain profile. / Phosphatidylinositol 3- and 4-kinases signature 1. / Phosphatidylinositol 3- and 4-kinases signature 2. / Phosphatidylinositol 3/4-kinase, conserved site / Phosphatidylinositol 3-/4-kinase, catalytic domain superfamily / Phosphoinositide 3-kinase, catalytic domain / Phosphatidylinositol 3- and 4-kinases catalytic domain profile. / Phosphatidylinositol 3-/4-kinase, catalytic domain / Phosphatidylinositol 3- and 4-kinase / C2 domain superfamily / Armadillo-type fold / Ubiquitin-like domain superfamily / Protein kinase-like domain superfamily
Similarity search - Domain/homology
Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform / Phosphoinositide 3-kinase regulatory subunit 5
Similarity search - Component
Biological speciesHomo sapiens (human)
Methodsingle particle reconstruction / cryo EM / Resolution: 3.36 Å
AuthorsBurke JE / Dalwadi U / Rathinaswamy MK / Yip CK
Funding support Canada, 1 items
OrganizationGrant numberCountry
Canadian Institutes of Health Research (CIHR)168998 Canada
CitationJournal: Sci Adv / Year: 2021
Title: Structure of the phosphoinositide 3-kinase (PI3K) p110γ-p101 complex reveals molecular mechanism of GPCR activation.
Authors: Manoj K Rathinaswamy / Udit Dalwadi / Kaelin D Fleming / Carson Adams / Jordan T B Stariha / Els Pardon / Minkyung Baek / Oscar Vadas / Frank DiMaio / Jan Steyaert / Scott D Hansen / Calvin ...Authors: Manoj K Rathinaswamy / Udit Dalwadi / Kaelin D Fleming / Carson Adams / Jordan T B Stariha / Els Pardon / Minkyung Baek / Oscar Vadas / Frank DiMaio / Jan Steyaert / Scott D Hansen / Calvin K Yip / John E Burke /
Abstract: The class IB phosphoinositide 3-kinase (PI3K), PI3Kγ, is a master regulator of immune cell function and a promising drug target for both cancer and inflammatory diseases. Critical to PI3Kγ function ...The class IB phosphoinositide 3-kinase (PI3K), PI3Kγ, is a master regulator of immune cell function and a promising drug target for both cancer and inflammatory diseases. Critical to PI3Kγ function is the association of the p110γ catalytic subunit to either a p101 or p84 regulatory subunit, which mediates activation by G protein-coupled receptors. Here, we report the cryo-electron microscopy structure of a heterodimeric PI3Kγ complex, p110γ-p101. This structure reveals a unique assembly of catalytic and regulatory subunits that is distinct from other class I PI3K complexes. p101 mediates activation through its Gβγ-binding domain, recruiting the heterodimer to the membrane and allowing for engagement of a secondary Gβγ-binding site in p110γ. Mutations at the p110γ-p101 and p110γ-adaptor binding domain interfaces enhanced Gβγ activation. A nanobody that specifically binds to the p101-Gβγ interface blocks activation, providing a novel tool to study and target p110γ-p101-specific signaling events in vivo.
History
DepositionApr 8, 2021-
Header (metadata) releaseFeb 16, 2022-
Map releaseFeb 16, 2022-
UpdateFeb 16, 2022-
Current statusFeb 16, 2022Processing site: RCSB / Status: Released

-
Structure visualization

Movie
  • Surface view with section colored by density value
  • Surface level: 0.892
  • Imaged by UCSF Chimera
  • Download
  • Surface view colored by radius
  • Surface level: 0.892
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerEM map:
SurfViewMolmilJmol/JSmol
Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_23812.map.gz / Format: CCP4 / Size: 103 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
Projections & slices

Image control

Size
Brightness
Contrast
Others
AxesZ (Sec.)Y (Row.)X (Col.)
1.08 Å/pix.
x 300 pix.
= 323.7 Å
1.08 Å/pix.
x 300 pix.
= 323.7 Å
1.08 Å/pix.
x 300 pix.
= 323.7 Å

Surface

Projections

Slices (1/3)

Slices (1/2)

Slices (2/3)

Images are generated by Spider.

Voxel sizeX=Y=Z: 1.079 Å
Density
Contour LevelBy AUTHOR: 0.892 / Movie #1: 0.892
Minimum - Maximum-3.0035362 - 5.170192
Average (Standard dev.)0.00012388699 (±0.098279685)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions300300300
Spacing300300300
CellA=B=C: 323.7 Å
α=β=γ: 90.0 °

CCP4 map header:

modeImage stored as Reals
Å/pix. X/Y/Z1.0791.0791.079
M x/y/z300300300
origin x/y/z0.0000.0000.000
length x/y/z323.700323.700323.700
α/β/γ90.00090.00090.000
MAP C/R/S123
start NC/NR/NS000
NC/NR/NS300300300
D min/max/mean-3.0045.1700.000

-
Supplemental data

-
Sample components

-
Entire : Complex of p110 gamma with p101

EntireName: Complex of p110 gamma with p101
Components
  • Complex: Complex of p110 gamma with p101

-
Supramolecule #1: Complex of p110 gamma with p101

SupramoleculeName: Complex of p110 gamma with p101 / type: complex / ID: 1 / Parent: 0 / Macromolecule list: #1-#2
Details: p110 subunit is from homo sapiens, p101 is from Sus scrofa
Source (natural)Organism: Homo sapiens (human)
Recombinant expressionOrganism: Spodoptera frugiperda (fall armyworm)

-
Experimental details

-
Structure determination

Methodcryo EM
Processingsingle particle reconstruction
Aggregation stateparticle

-
Sample preparation

Concentration0.4 mg/mL
BufferpH: 8.5
Component:
ConcentrationFormulaName
20.0 mMTrisHClTris(hydroxymethyl)aminomethane-Hydrochloric acid
100.0 mMNaClSodium Chloride
50.0 mM(NH4)2SO4Ammonium Sulfate
0.5 mMTCEPTris(2-carboxyethyl)phosphine

Details: Freshly prepared gel filtration buffer, filtered through 0.22um filter and degassed
GridModel: C-flat-2/2 / Material: COPPER / Mesh: 300 / Pretreatment - Type: GLOW DISCHARGE / Pretreatment - Atmosphere: AIR / Pretreatment - Pressure: 0.039 kPa
Details: Glow discharged using a Pelco EasiGlow. 15mA current.
VitrificationCryogen name: ETHANE / Chamber humidity: 100 % / Chamber temperature: 277 K / Instrument: FEI VITROBOT MARK IV / Details: 1.5s blot time, -5 blot force.
DetailsSpecimen was a 1:1 molar ratio of p110g-p101, purified to homogeneity by gel filtration.

-
Electron microscopy

MicroscopeFEI TITAN KRIOS
Specialist opticsEnergy filter - Name: GIF Bioquantum / Energy filter - Slit width: 20 eV
DetailsPNCC Krios 4
Image recordingFilm or detector model: GATAN K3 BIOQUANTUM (6k x 4k) / Number grids imaged: 1 / Number real images: 6153 / Average electron dose: 50.0 e/Å2
Details: Movies were collected in super-resolution mode set to collect 3 shots per grid hole over 5 holes by beam-shift before applying a stage shift.
Electron beamAcceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
Electron opticsIllumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Cs: 2.7 mm / Nominal defocus max: 2.2 µm / Nominal defocus min: 0.8 µm / Nominal magnification: 81000
Sample stageSpecimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER / Cooling holder cryogen: NITROGEN
Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company

+
Image processing

DetailsAll data processing carried out using cryoSPARC v2.18 or newer. Movies were subjected to full-frame motion correction and 2x2 binning. CTFs of the resulting micrographs were estimated using patch CTF estimation. Template picking using 2D averages low-pass filtered to 20A was carried out before 2 rounds of 2D classification. Best particles were refined by local motion correction, then subjected to 2 more rounds of 2D classification. Best particles were then classified further by 2 rounds of 3D classification. The best class/particles were further refined by homogeneous refinement, followed by a final non-uniform refinement step.
Particle selectionNumber selected: 4792176
Details: Particles were picked using the cryoSPARC template picker
CTF correctionSoftware - Name: cryoSPARC (ver. 2.18)
Startup modelType of model: NONE / Details: Ab initio reconstruction with 2 classes
Final reconstructionApplied symmetry - Point group: C1 (asymmetric) / Resolution.type: BY AUTHOR / Resolution: 3.36 Å / Resolution method: FSC 0.143 CUT-OFF / Software - Name: cryoSPARC (ver. 2.18)
Details: Final reconstruction was generated in cryoSPARC v2.18 using the (now) legacy NU-refinement job.
Number images used: 196390
Initial angle assignmentType: MAXIMUM LIKELIHOOD / Software - Name: cryoSPARC (ver. 2.18) / Details: cryoSPARC SGD-based ab intio reconstruction
Final angle assignmentType: MAXIMUM LIKELIHOOD / Software - Name: cryoSPARC (ver. 2.18) / Details: cryoSPARC non-uniform refinement
FSC plot (resolution estimation)

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more