[English] 日本語
Yorodumi- EMDB-19068: CryoEM reconstruction of SARS-CoV-2 Spike in complex with nanobod... -
+Open data
-Basic information
Entry | Database: EMDB / ID: EMD-19068 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | CryoEM reconstruction of SARS-CoV-2 Spike in complex with nanobody tri-TMH (closed conformation) | ||||||||||||
Map data | Map filtered to local resolution | ||||||||||||
Sample |
| ||||||||||||
Keywords | SARS-CoV-2 spike / nanobody / trimodular nanobody / VIRAL PROTEIN | ||||||||||||
Biological species | Severe acute respiratory syndrome coronavirus 2 / Vicugna pacos (alpaca) | ||||||||||||
Method | single particle reconstruction / cryo EM / Resolution: 3.48 Å | ||||||||||||
Authors | Rissanen I / Hannula L / Huiskonen JT | ||||||||||||
Funding support | Finland, 3 items
| ||||||||||||
Citation | Journal: Microbiol Spectr / Year: 2024 Title: Nanobody engineering for SARS-CoV-2 neutralization and detection. Authors: Liina Hannula / Suvi Kuivanen / Jonathan Lasham / Ravi Kant / Lauri Kareinen / Mariia Bogacheva / Tomas Strandin / Tarja Sironen / Jussi Hepojoki / Vivek Sharma / Petri Saviranta / Anja ...Authors: Liina Hannula / Suvi Kuivanen / Jonathan Lasham / Ravi Kant / Lauri Kareinen / Mariia Bogacheva / Tomas Strandin / Tarja Sironen / Jussi Hepojoki / Vivek Sharma / Petri Saviranta / Anja Kipar / Olli Vapalahti / Juha T Huiskonen / Ilona Rissanen / Abstract: In response to the ongoing COVID-19 pandemic, the quest for coronavirus inhibitors has inspired research on a variety of small proteins beyond conventional antibodies, including robust single-domain ...In response to the ongoing COVID-19 pandemic, the quest for coronavirus inhibitors has inspired research on a variety of small proteins beyond conventional antibodies, including robust single-domain antibody fragments, i.e., "nanobodies." Here, we explore the potential of nanobody engineering in the development of antivirals and diagnostic tools. Through fusion of nanobody domains that target distinct binding sites, we engineered multimodular nanobody constructs that neutralize wild-type SARS-CoV-2 and the Alpha and Delta variants at high potency, with IC values as low as 50 pM. Despite simultaneous binding to distinct epitopes, Beta and Omicron variants were more resistant to neutralization by the multimodular nanobodies, which highlights the importance of accounting for antigenic drift in the design of biologics. To further explore the applications of nanobody engineering in outbreak management, we present an assay based on fusions of nanobodies with fragments of NanoLuc luciferase that can detect sub-nanomolar quantities of the SARS-CoV-2 spike protein in a single step. Our work showcases the potential of nanobody engineering to combat emerging infectious diseases. IMPORTANCE: Nanobodies, small protein binders derived from the camelid antibody, are highly potent inhibitors of respiratory viruses that offer several advantages over conventional antibodies as ...IMPORTANCE: Nanobodies, small protein binders derived from the camelid antibody, are highly potent inhibitors of respiratory viruses that offer several advantages over conventional antibodies as candidates for specific therapies, including high stability and low production costs. In this work, we leverage the unique properties of nanobodies and apply them as building blocks for new therapeutic and diagnostic tools. We report ultra-potent SARS-CoV-2 inhibition by engineered nanobodies comprising multiple modules in structure-guided combinations and develop nanobodies that carry signal molecules, allowing rapid detection of the SARS-CoV-2 spike protein. Our results highlight the potential of engineered nanobodies in the development of effective countermeasures, both therapeutic and diagnostic, to manage outbreaks of emerging viruses. | ||||||||||||
History |
|
-Structure visualization
Supplemental images |
---|
-Downloads & links
-EMDB archive
Map data | emd_19068.map.gz | 49.1 MB | EMDB map data format | |
---|---|---|---|---|
Header (meta data) | emd-19068-v30.xml emd-19068.xml | 18 KB 18 KB | Display Display | EMDB header |
FSC (resolution estimation) | emd_19068_fsc.xml | 19.3 KB | Display | FSC data file |
Images | emd_19068.png | 36.7 KB | ||
Masks | emd_19068_msk_1.map | 512 MB | Mask map | |
Filedesc metadata | emd-19068.cif.gz | 6.2 KB | ||
Others | emd_19068_half_map_1.map.gz emd_19068_half_map_2.map.gz | 475.1 MB 475.1 MB | ||
Archive directory | http://ftp.pdbj.org/pub/emdb/structures/EMD-19068 ftp://ftp.pdbj.org/pub/emdb/structures/EMD-19068 | HTTPS FTP |
-Validation report
Summary document | emd_19068_validation.pdf.gz | 1.1 MB | Display | EMDB validaton report |
---|---|---|---|---|
Full document | emd_19068_full_validation.pdf.gz | 1.1 MB | Display | |
Data in XML | emd_19068_validation.xml.gz | 26.4 KB | Display | |
Data in CIF | emd_19068_validation.cif.gz | 34.4 KB | Display | |
Arichive directory | https://ftp.pdbj.org/pub/emdb/validation_reports/EMD-19068 ftp://ftp.pdbj.org/pub/emdb/validation_reports/EMD-19068 | HTTPS FTP |
-Related structure data
-Links
EMDB pages | EMDB (EBI/PDBe) / EMDataResource |
---|
-Map
File | Download / File: emd_19068.map.gz / Format: CCP4 / Size: 512 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | Map filtered to local resolution | ||||||||||||||||||||||||||||||||||||
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 0.82 Å | ||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-Mask #1
File | emd_19068_msk_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: Half map B
File | emd_19068_half_map_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | Half map B | ||||||||||||
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: Half map A
File | emd_19068_half_map_2.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | Half map A | ||||||||||||
Projections & Slices |
| ||||||||||||
Density Histograms |
-Sample components
-Entire : SARS-CoV-2 spike in complex with nanobody tri-TMH
Entire | Name: SARS-CoV-2 spike in complex with nanobody tri-TMH |
---|---|
Components |
|
-Supramolecule #1: SARS-CoV-2 spike in complex with nanobody tri-TMH
Supramolecule | Name: SARS-CoV-2 spike in complex with nanobody tri-TMH / type: complex / ID: 1 / Parent: 0 / Macromolecule list: all |
---|---|
Source (natural) | Organism: Severe acute respiratory syndrome coronavirus 2 |
-Macromolecule #1: SARS-CoV-2 Spike protein
Macromolecule | Name: SARS-CoV-2 Spike protein / type: protein_or_peptide / ID: 1 / Enantiomer: LEVO |
---|---|
Source (natural) | Organism: Severe acute respiratory syndrome coronavirus 2 |
Recombinant expression | Organism: Homo sapiens (human) |
Sequence | String: TGQCVNLTTR TQLPPAYTNS FTRGVYYPDK VFRSSVLHST QDLFLPFFSN VTWFHAIHVS GTNGTKRFDN PVLPFNDGVY FASTEKSNII RGWIFGTTLD SKTQSLLIVN NATNVVIKVC EFQFCNDPFL GVYYHKNNKS WMESEFRVYS SANNCTFEYV SQPFLMDLEG ...String: TGQCVNLTTR TQLPPAYTNS FTRGVYYPDK VFRSSVLHST QDLFLPFFSN VTWFHAIHVS GTNGTKRFDN PVLPFNDGVY FASTEKSNII RGWIFGTTLD SKTQSLLIVN NATNVVIKVC EFQFCNDPFL GVYYHKNNKS WMESEFRVYS SANNCTFEYV SQPFLMDLEG KQGNFKNLRE FVFKNIDGYF KIYSKHTPIN LVRDLPQGFS ALEPLVDLPI GINITRFQTL LALHRSYLTP GDSSSGWTAG AAAYYVGYLQ PRTFLLKYNE NGTITDAVDC ALDPLSETKC TLKSFTVEKG IYQTSNFRVQ PTESIVRFPN ITNLCPFGEV FNATRFASVY AWNRKRISNC VADYSVLYNS ASFSTFKCYG VSPTKLNDLC FTNVYADSFV IRGDEVRQIA PGQTGKIADY NYKLPDDFTG CVIAWNSNNL DSKVGGNYNY LYRLFRKSNL KPFERDISTE IYQAGSTPCN GVEGFNCYFP LQSYGFQPTN GVGYQPYRVV VLSFELLHAP ATVCGPKKST NLVKNKCVNF NFNGLTGTGV LTESNKKFLP FQQFGRDIAD TTDAVRDPQT LEILDITPCS FGGVSVITPG TNTSNQVAVL YQDVNCTEVP VAIHADQLTP TWRVYSTGSN VFQTRAGCLI GAEHVNNSYE CDIPIGAGIC ASYQTQTNSP GSASSVASQS IIAYTMSLGA ENSVAYSNNS IAIPTNFTIS VTTEILPVSM TKTSVDCTMY ICGDSTECSN LLLQYGSFCT QLNRALTGIA VEQDKNTQEV FAQVKQIYKT PPIKDFGGFN FSQILPDPSK PSKRSFIEDL LFNKVTLADA GFIKQYGDCL GDIAARDLIC AQKFNGLTVL PPLLTDEMIA QYTSALLAGT ITSGWTFGAG AALQIPFAMQ MAYRFNGIGV TQNVLYENQK LIANQFNSAI GKIQDSLSST ASALGKLQDV VNQNAQALNT LVKQLSSNFG AISSVLNDIL SRLDPPEAEV QIDRLITGRL QSLQTYVTQQ LIRAAEIRAS ANLAATKMSE CVLGQSKRVD FCGKGYHLMS FPQSAPHGVV FLHVTYVPAQ EKNFTTAPAI CHDGKAHFPR EGVFVSNGTH WFVTQRNFYE PQIITTDNTF VSGNCDVVIG IVNNTVYDPL QPELDSFKEE LDKYFKNHTS PDVDLGDISG INASVVNIQK EIDRLNEVAK NLNESLIDLQ ELGKYEQGTG YIPEAPRDGQ AYVRKDGEWV LLSTFLGSGL EVLFQGPGSG RGVPHIVMVD AYKRYKGSGH HHHHHHH |
-Macromolecule #2: Nanobody tri-TMH
Macromolecule | Name: Nanobody tri-TMH / type: protein_or_peptide / ID: 2 / Enantiomer: LEVO |
---|---|
Source (natural) | Organism: Vicugna pacos (alpaca) |
Recombinant expression | Organism: Homo sapiens (human) |
Sequence | String: MRGSHHHHHH GMASMTGGQQ MGRDLYDDDD KDHPFTQVQL VETGGGLVQP GGSLRLSCAA SGFTFSSVYM NWVRQAPGKG PEWVSRISPN SGNIGYTDSV KGRFTISRDN AKNTLYLQMN NLKPEDTALY YCAIGLNLSS SSVRGQGTQV TVSSGGGGSG GGGSGGGGSG ...String: MRGSHHHHHH GMASMTGGQQ MGRDLYDDDD KDHPFTQVQL VETGGGLVQP GGSLRLSCAA SGFTFSSVYM NWVRQAPGKG PEWVSRISPN SGNIGYTDSV KGRFTISRDN AKNTLYLQMN NLKPEDTALY YCAIGLNLSS SSVRGQGTQV TVSSGGGGSG GGGSGGGGSG GGGSQVQLVE SGGGLVQAGG SLRLSCAASG FPVEVWRMEW YRQAPGKERE GVAAIESYGH GTRYADSVKG RFTISRDNAK NTVYLQMNSL KPEDTAVYYC NVYDDGQLAY HYDYWGQGTQ VTVSSGGGGS GGGGSGGGGS GGGGSQVQLV ESGGGLMQAG GSLRLSCAVS GRTFSTAAMG WFRQAPGKER EFVAAIRWSG GSAYYADSVK GRFTISRDKA KNTVYLQMNS LKYEDTAVYY CAQTHYVSYL LSDYATWPYD YWGQGTQVTV SS |
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
Processing | single particle reconstruction |
Aggregation state | particle |
-Sample preparation
Buffer | pH: 8 / Details: 10 mM Tris pH 8, 150 mM NaCl |
---|---|
Grid | Model: Quantifoil R1.2/1.3 / Material: COPPER / Mesh: 200 / Support film - Material: CARBON / Pretreatment - Type: GLOW DISCHARGE / Pretreatment - Time: 30 sec. |
Vitrification | Cryogen name: ETHANE / Chamber humidity: 95 % / Chamber temperature: 274.15 K / Instrument: FEI VITROBOT MARK IV |
-Electron microscopy
Microscope | FEI TITAN KRIOS |
---|---|
Image recording | Film or detector model: GATAN K2 QUANTUM (4k x 4k) / Detector mode: COUNTING / Digitization - Frames/image: 1-40 / Number real images: 3073 / Average exposure time: 5.0 sec. / Average electron dose: 1.38 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN |
Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Nominal defocus max: 3.0 µm / Nominal defocus min: 1.5 µm |
Experimental equipment | Model: Titan Krios / Image courtesy: FEI Company |