[English] 日本語

- EMDB-18221: Structure of the hexameric CUL9-RBX1 complex with deletion of CUL... -
+
Open data
-
Basic information
Entry | ![]() | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Structure of the hexameric CUL9-RBX1 complex with deletion of CUL9 DOC domain | |||||||||
![]() | postprocess map | |||||||||
![]() |
| |||||||||
![]() | Cullin-RING RBR E3 Ligase / LIGASE | |||||||||
Function / homology | ![]() cullin-RING-type E3 NEDD8 transferase / NEDD8 transferase activity / cullin-RING ubiquitin ligase complex / cellular response to chemical stress / Cul7-RING ubiquitin ligase complex / ubiquitin-dependent protein catabolic process via the C-end degron rule pathway / Loss of Function of FBXW7 in Cancer and NOTCH1 Signaling / positive regulation of protein autoubiquitination / protein neddylation / NEDD8 ligase activity ...cullin-RING-type E3 NEDD8 transferase / NEDD8 transferase activity / cullin-RING ubiquitin ligase complex / cellular response to chemical stress / Cul7-RING ubiquitin ligase complex / ubiquitin-dependent protein catabolic process via the C-end degron rule pathway / Loss of Function of FBXW7 in Cancer and NOTCH1 Signaling / positive regulation of protein autoubiquitination / protein neddylation / NEDD8 ligase activity / negative regulation of response to oxidative stress / Cul5-RING ubiquitin ligase complex / SCF ubiquitin ligase complex / Cul2-RING ubiquitin ligase complex / Cul4A-RING E3 ubiquitin ligase complex / ubiquitin-ubiquitin ligase activity / regulation of mitotic nuclear division / negative regulation of type I interferon production / SCF-dependent proteasomal ubiquitin-dependent protein catabolic process / Cul3-RING ubiquitin ligase complex / Cul4B-RING E3 ubiquitin ligase complex / negative regulation of mitophagy / Prolactin receptor signaling / cullin family protein binding / protein monoubiquitination / protein K48-linked ubiquitination / Nuclear events stimulated by ALK signaling in cancer / regulation of cellular response to insulin stimulus / positive regulation of TORC1 signaling / negative regulation of insulin receptor signaling pathway / post-translational protein modification / T cell activation / Regulation of BACH1 activity / cellular response to amino acid stimulus / Degradation of DVL / Degradation of GLI1 by the proteasome / Recognition of DNA damage by PCNA-containing replication complex / GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 / negative regulation of canonical Wnt signaling pathway / Negative regulation of NOTCH4 signaling / Vif-mediated degradation of APOBEC3G / Hedgehog 'on' state / Degradation of GLI2 by the proteasome / GLI3 is processed to GLI3R by the proteasome / FBXL7 down-regulates AURKA during mitotic entry and in early mitosis / DNA Damage Recognition in GG-NER / RING-type E3 ubiquitin transferase / Degradation of beta-catenin by the destruction complex / Evasion by RSV of host interferon responses / Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha / Dual Incision in GG-NER / Transcription-Coupled Nucleotide Excision Repair (TC-NER) / NOTCH1 Intracellular Domain Regulates Transcription / Formation of TC-NER Pre-Incision Complex / microtubule cytoskeleton organization / Constitutive Signaling by NOTCH1 PEST Domain Mutants / Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants / Regulation of expression of SLITs and ROBOs / Formation of Incision Complex in GG-NER / Interleukin-1 signaling / Orc1 removal from chromatin / Dual incision in TC-NER / Regulation of RAS by GAPs / protein polyubiquitination / positive regulation of protein catabolic process / Gap-filling DNA repair synthesis and ligation in TC-NER / Regulation of RUNX2 expression and activity / cellular response to UV / KEAP1-NFE2L2 pathway / ubiquitin protein ligase activity / MAPK cascade / Antigen processing: Ubiquitination & Proteasome degradation / positive regulation of proteasomal ubiquitin-dependent protein catabolic process / Neddylation / cellular response to oxidative stress / ubiquitin-dependent protein catabolic process / spermatogenesis / molecular adaptor activity / RNA polymerase II-specific DNA-binding transcription factor binding / proteasome-mediated ubiquitin-dependent protein catabolic process / Potential therapeutics for SARS / positive regulation of canonical NF-kappaB signal transduction / protein ubiquitination / DNA repair / ubiquitin protein ligase binding / DNA damage response / zinc ion binding / nucleoplasm / ATP binding / nucleus / cytosol / cytoplasm Similarity search - Function | |||||||||
Biological species | ![]() | |||||||||
Method | single particle reconstruction / cryo EM / Resolution: 13.7 Å | |||||||||
![]() | Hopf LVM / Horn-Ghetko D / Schulman BA | |||||||||
Funding support | European Union, ![]()
| |||||||||
![]() | ![]() Title: Noncanonical assembly, neddylation and chimeric cullin-RING/RBR ubiquitylation by the 1.8 MDa CUL9 E3 ligase complex. Authors: Daniel Horn-Ghetko / Linus V M Hopf / Ishita Tripathi-Giesgen / Jiale Du / Sebastian Kostrhon / D Tung Vu / Viola Beier / Barbara Steigenberger / J Rajan Prabu / Luca Stier / Elias M Bruss / ...Authors: Daniel Horn-Ghetko / Linus V M Hopf / Ishita Tripathi-Giesgen / Jiale Du / Sebastian Kostrhon / D Tung Vu / Viola Beier / Barbara Steigenberger / J Rajan Prabu / Luca Stier / Elias M Bruss / Matthias Mann / Yue Xiong / Brenda A Schulman / ![]() ![]() Abstract: Ubiquitin ligation is typically executed by hallmark E3 catalytic domains. Two such domains, 'cullin-RING' and 'RBR', are individually found in several hundred human E3 ligases, and collaborate with ...Ubiquitin ligation is typically executed by hallmark E3 catalytic domains. Two such domains, 'cullin-RING' and 'RBR', are individually found in several hundred human E3 ligases, and collaborate with E2 enzymes to catalyze ubiquitylation. However, the vertebrate-specific CUL9 complex with RBX1 (also called ROC1), of interest due to its tumor suppressive interaction with TP53, uniquely encompasses both cullin-RING and RBR domains. Here, cryo-EM, biochemistry and cellular assays elucidate a 1.8-MDa hexameric human CUL9-RBX1 assembly. Within one dimeric subcomplex, an E2-bound RBR domain is activated by neddylation of its own cullin domain and positioning from the adjacent CUL9-RBX1 in trans. Our data show CUL9 as unique among RBX1-bound cullins in dependence on the metazoan-specific UBE2F neddylation enzyme, while the RBR domain protects it from deneddylation. Substrates are recruited to various upstream domains, while ubiquitylation relies on both CUL9's neddylated cullin and RBR domains achieving self-assembled and chimeric cullin-RING/RBR E3 ligase activity. | |||||||||
History |
|
-
Structure visualization
Supplemental images |
---|
-
Downloads & links
-EMDB archive
Map data | ![]() | 9.6 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 20.9 KB 20.9 KB | Display Display | ![]() |
FSC (resolution estimation) | ![]() | 9.3 KB | Display | ![]() |
Images | ![]() | 53.2 KB | ||
Filedesc metadata | ![]() | 6.5 KB | ||
Others | ![]() ![]() ![]() | 49.4 MB 49.6 MB 49.6 MB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 8q7eC ![]() 8q7hC ![]() 8rhzC C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
EMDB pages | ![]() ![]() |
---|---|
Related items in Molecule of the Month |
-
Map
File | ![]() | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | postprocess map | ||||||||||||||||||||||||||||||||||||
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 1.997 Å | ||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-Additional map: refinement map
File | emd_18221_additional_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | refinement map | ||||||||||||
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: #1
File | emd_18221_half_map_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: #2
File | emd_18221_half_map_2.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-
Sample components
-Entire : Structure of the hexameric CUL9-RBX1 complex with deletion of CUL...
Entire | Name: Structure of the hexameric CUL9-RBX1 complex with deletion of CUL9 DOC domain |
---|---|
Components |
|
-Supramolecule #1: Structure of the hexameric CUL9-RBX1 complex with deletion of CUL...
Supramolecule | Name: Structure of the hexameric CUL9-RBX1 complex with deletion of CUL9 DOC domain type: complex / ID: 1 / Parent: 0 / Macromolecule list: all |
---|---|
Source (natural) | Organism: ![]() |
-Macromolecule #1: Cullin-9
Macromolecule | Name: Cullin-9 / type: protein_or_peptide / ID: 1 / Enantiomer: LEVO |
---|---|
Source (natural) | Organism: ![]() |
Recombinant expression | Organism: ![]() |
Sequence | String: MVGERHAGDL MVPLGPRLQA YPEELIRQRP GHDGHPEYLI RWSVLKCGEV GKVGVEEGKA EHILMWLSAP EVYANCPGLL GERALSKGLQ HEPAGVSGSF PRDPGGLDEV AMGEMEADVQ ALVRRAARQL AESGTPSLTA AVLHTIHVLS AYASIGPLTG VFRETGALDL ...String: MVGERHAGDL MVPLGPRLQA YPEELIRQRP GHDGHPEYLI RWSVLKCGEV GKVGVEEGKA EHILMWLSAP EVYANCPGLL GERALSKGLQ HEPAGVSGSF PRDPGGLDEV AMGEMEADVQ ALVRRAARQL AESGTPSLTA AVLHTIHVLS AYASIGPLTG VFRETGALDL LMHMLCNPEP QIRRSAGKML QALAAHDAGS RAHVLLSLSQ QDGIEQHMDF DSRYTLLELF AETTSSEEHC MAFEGIHLPQ IPGKLLFSLV KRYLCVTSLL DQLNSSPELG AGDQSSPCAT REKSRGQREL EFSMAVGNLI SELVRSMGWA RNLSEQGMSP PRPTRSIFQP YISGPSLLLP TIVTTPRRQG WVFRQRSEFS SRSGYGEYVQ QTLQPGMRVR MLDDYEEISA GDEGEFRQSN NGIPPVQVFW QSTGRTYWVH WHMLEILGPE EATEDKASAA VEKGAGATVL GTAFPSWDWN PMDGLYPLPY LQPEPQKNER VGYLTQAEWW ELLFFIKKLD LCEQQPIFQN LWKNLDETLG EKALGEISVS VEMAESLLQV LSSRFEGSTL NDLLNSQIYT KYGLLSNEPS SSSTSRNHSC TPDPEEESKS EASFSEEETE SLKAKAEAPK TEAEPTKTRT ETPMAQSDSQ LFNQLLVTEG MTLPTEMKEA ASEMARALRG PGPRSSLDQH VAAVVATVQI SSLDTNLQLS GLSALSQAVE EVTERDHPLV RPDRSLREKL VKMLVELLTN QVGEKMVVVQ ALRLLYLLMT KHEWRPLFAR EGGIYAVLVC MQEYKTSVLV QQAGLAALKM LAVASSSEIP TFVTGRDSIH SLFDAQMTRE IFASIDSATR PGSESLLLTV PAAVILMLNT EGCSSAARNG LLLLNLLLCN HHTLGDQIIT QELRDTLFRH SGIAPRTEPM PTTRTILMML LNRYSEPPGS PERAALETPI IQGQDGSPEL LIRSLVGGPS AELLLDLERV LCREGSPGGA VRPLLKRLQQ ETQPFLLLLR TLDAPGPNKT LLLSVLRVIT RLLDFPEAMV LPWHEVLEPC LNCLSGPSSD SEIVQELTCF LHRLASMHKD YAVVLCCLGA KEILSKVLDK HSAQLLLGCE LRDLVTECEK YAQLYSNLTS SILAGCIQMV LGQIEDHRRT HQPINIPFFD VFLRHLCQGS SVEVKEGSGS GSGSGPKPTF WPLFREQLCR RTCLFYTIRA QAWSRDIAED HRRLLQLCPR LNRVLRHEQN FADRFLPDDE AAQALGKTCW EALVSPLVQN ITSPDAEGVS ALGWLLDQYL EQRETSRNPL SRAASFASRV RRLCHLLVHV EPPPGPSPEP STRPFSKNSK GRDRSPAPSP VLPSSSLRNI TQCWLSVVQE QVSRFLAAAW RAPDFVPRYC KLYEHLQRAG SELFGPRAAF MLALRSGFSG ALLQQSFLTA AHMSEQFARY IDQQIQGGLI GGAPGVEMLG QLQRHLEPIM VLSGLELATT FEHFYQHYMA DRLLSFGSSW LEGAVLEQIG LCFPNRLPQL MLQSLSTSEE LQRQFHLFQL QRLDKLFLEQ EDEEEKRLEE EEEEEEEEEA EKELFIEDPS PAISILVLSP RCWPVSPLCY LYHPRKCLPT EFCDALDRFS SFYSQSQNHP VLDMGPHRRL QWTWLGRAEL QFGKQILHVS TVQMWLLLKF NQTEEVSVET LLKDSDLSPE LLLQALVPLT SGNGPLTLHE GQDFPHGGVL RLHEPGPQRS GEALWLIPPQ AYLNVEKDEG RTLEQKRNLL SCLLVRILKA HGEKGLHIDQ LVCLVLEAWQ KGPNPPGTLG HTVAGGVACT STDVLSCILH LLGQGYVKRR DDRPQILMYA APEPMGPCRG QADVPFCGSQ SETSKPSPEA VATLASLQLP AGRTMSPQEV EGLMKQTVRQ VQETLNLEPD VAQHLLAHSH WGAEQLLQSY SEDPEPLLLA AGLCVHQAQA VPVRPDHCPV CVSPLGCDDD LPSLCCMHYC CKSCWNEYLT TRIEQNLVLN CTCPIADCPA QPTGAFIRAI VSSPEVISKY EKALLRGYVE SCSNLTWCTN PQGCDRILCR QGLGCGTTCS KCGWASCFNC SFPEAHYPAS CGHMSQWVDD GGYYDGMSVE AQSKHLAKLI SKRCPSCQAP IEKNEGCLHM TCAKCNHGFC WRCLKSWKPN HKDYYNCSAM VSKAARQEKR FQDYNERCTF HHQAREFAVN LRNRVSAIHE VPPPRSFTFL NDACQGLEQA RKVLAYACVY SFYSQDAEYM DVVEQQTENL ELHTNALQIL LEETLLRCRD LASSLRLLRA DCLSTGMELL RRIQERLLAI LQHSAQDFRV GLQSPSVEAW EAKGPNMPGS QPQASSGPEA EEEEEDDEDD VPEWQQDEFD EELDNDSFSY DESENLDQET FFFGDEEEDE DEAYD UniProtKB: Cullin-9 |
-Macromolecule #2: E3 ubiquitin-protein ligase RBX1
Macromolecule | Name: E3 ubiquitin-protein ligase RBX1 / type: protein_or_peptide / ID: 2 / Enantiomer: LEVO |
---|---|
Source (natural) | Organism: ![]() |
Recombinant expression | Organism: ![]() |
Sequence | String: MDVDTPSGTN SGAGKKRFEV KKWNAVALWA WDIVVDNCAI CRNHIMDLCI ECQANQ ASA TSEECTVAWG VCNHAFHFHC ISRWLKTRQV CPLDNREWEF QKYGH UniProtKB: E3 ubiquitin-protein ligase RBX1 |
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | particle |
-
Sample preparation
Concentration | 3 mg/mL |
---|---|
Buffer | pH: 7.5 |
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy
Microscope | FEI TALOS ARCTICA |
---|---|
Image recording | Film or detector model: FEI FALCON III (4k x 4k) / Average electron dose: 60.0 e/Å2 |
Electron beam | Acceleration voltage: 200 kV / Electron source: ![]() |
Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Nominal defocus max: 3.3000000000000003 µm / Nominal defocus min: 1.2 µm |
Experimental equipment | ![]() Model: Talos Arctica / Image courtesy: FEI Company |