pre-mRNA 5'-splice site binding / response to cycloheximide / cleavage in ITS2 between 5.8S rRNA and LSU-rRNA of tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / SRP-dependent cotranslational protein targeting to membrane / GTP hydrolysis and joining of the 60S ribosomal subunit / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) / negative regulation of mRNA splicing, via spliceosome / Formation of a pool of free 40S subunits / preribosome, large subunit precursor ...pre-mRNA 5'-splice site binding / response to cycloheximide / cleavage in ITS2 between 5.8S rRNA and LSU-rRNA of tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / SRP-dependent cotranslational protein targeting to membrane / GTP hydrolysis and joining of the 60S ribosomal subunit / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) / negative regulation of mRNA splicing, via spliceosome / Formation of a pool of free 40S subunits / preribosome, large subunit precursor / L13a-mediated translational silencing of Ceruloplasmin expression / translational elongation / ribosomal large subunit export from nucleus / 90S preribosome / regulation of translational fidelity / protein-RNA complex assembly / translational termination / maturation of LSU-rRNA / maturation of LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / ribosomal large subunit biogenesis / translational initiation / macroautophagy / maintenance of translational fidelity / modification-dependent protein catabolic process / protein tag activity / rRNA processing / ribosome biogenesis / 5S rRNA binding / ribosomal large subunit assembly / large ribosomal subunit rRNA binding / cytosolic large ribosomal subunit / cytoplasmic translation / negative regulation of translation / rRNA binding / protein ubiquitination / ribosome / structural constituent of ribosome / translation / response to antibiotic / mRNA binding / ubiquitin protein ligase binding / nucleolus / RNA binding / zinc ion binding / nucleus / cytosol / cytoplasm Similarity search - Function
60s Acidic ribosomal protein / 60S acidic ribosomal protein P0 / : / 50S ribosomal protein L10, insertion domain superfamily / 60S ribosomal protein L10P, insertion domain / Insertion domain in 60S ribosomal protein L10P / : / Ribosomal protein L29e / Ribosomal L29e protein family / Ribosomal protein L13e, conserved site ...60s Acidic ribosomal protein / 60S acidic ribosomal protein P0 / : / 50S ribosomal protein L10, insertion domain superfamily / 60S ribosomal protein L10P, insertion domain / Insertion domain in 60S ribosomal protein L10P / : / Ribosomal protein L29e / Ribosomal L29e protein family / Ribosomal protein L13e, conserved site / Ribosomal protein L13e signature. / Ribosomal protein L22e / Ribosomal protein L22e superfamily / Ribosomal L22e protein family / Ribosomal protein L10e, conserved site / Ribosomal protein L10e signature. / Ribosomal protein L27e, conserved site / Ribosomal protein L27e signature. / Ribosomal protein L10e / Ribosomal protein L38e / Ribosomal protein L38e superfamily / Ribosomal L38e protein family / Ribosomal protein L44e signature. / Ribosomal protein L24e, conserved site / Ribosomal protein L24e signature. / : / Ribosomal protein L19, eukaryotic / Ribosomal protein L19/L19e conserved site / Ribosomal protein L19e signature. / Ribosomal protein L6e signature. / Ribosomal protein L13e / Ribosomal protein L13e / 60S ribosomal protein L18a/ L20, eukaryotes / : / Ribosomal protein L44e / Ribosomal protein L44 / : / Ribosomal protein L34e, conserved site / Ribosomal protein L34e signature. / Ribosomal protein L5 eukaryotic, C-terminal / Ribosomal L18 C-terminal region / Ribosomal protein L30e signature 1. / 50S ribosomal protein L18Ae/60S ribosomal protein L20 and L18a / Ribosomal L40e family / Ribosomal protein 50S-L18Ae/60S-L20/60S-L18A / Ribosomal proteins 50S-L18Ae/60S-L20/60S-L18A / Ribosomal protein L23/L25, N-terminal / Ribosomal protein L23, N-terminal domain / Ribosomal_L40e / Ribosomal protein L40e / Ribosomal protein L40e superfamily / Eukaryotic Ribosomal Protein L27, KOW domain / Ribosomal protein 60S L18 and 50S L18e / Ribosomal Protein L6, KOW domain / Ribosomal protein L18/L18-A/B/e, conserved site / Ribosomal protein L18e signature. / Ribosomal protein L30e signature 2. / Ribosomal protein L27e / Ribosomal protein L27e superfamily / Ribosomal L27e protein family / Ribosomal protein L36e signature. / Ribosomal protein L35Ae, conserved site / Ribosomal protein L30e, conserved site / Ribosomal protein L35Ae signature. / : / Ribosomal protein L6e / Ribosomal protein L34Ae / Ribosomal protein L34e / 60S ribosomal protein L19 / Ribosomal protein L30/YlxQ / Ribosomal protein L7A/L8 / 60S ribosomal protein L6E / 60S ribosomal protein L35 / Ribosomal protein L13, eukaryotic/archaeal / Ribosomal protein L18e / 60S ribosomal protein L4, C-terminal domain / 60S ribosomal protein L4 C-terminal domain / Ribosomal protein L7, eukaryotic / Ribosomal protein L30, N-terminal / Ribosomal protein L31e, conserved site / Ribosomal L30 N-terminal domain / Ribosomal protein L31e signature. / Ribosomal protein L37ae / Ribosomal L37ae protein family / Ribosomal protein L36e / Ribosomal protein L36e domain superfamily / Ribosomal protein L36e / Ribosomal_L19e / Ribosomal protein L19/L19e / Ribosomal protein L19/L19e, domain 1 / Ribosomal protein L19/L19e superfamily / Ribosomal protein L19e, N-terminal domain / Ribosomal protein L14e domain / Ribosomal protein L14 / Ribosomal protein L35A / Ribosomal protein L35Ae / Ribosomal protein L35A superfamily / Ribosomal protein L32e, conserved site / Ribosomal protein L32e signature. / Ribosomal protein L5 eukaryotic/L18 archaeal Similarity search - Domain/homology
Large ribosomal subunit protein uL15 / Large ribosomal subunit protein eL24A / Large ribosomal subunit protein uL23 / Large ribosomal subunit protein uL10 / Large ribosomal subunit protein uL30A / Large ribosomal subunit protein uL6A / Large ribosomal subunit protein uL22A / Large ribosomal subunit protein uL24A / Large ribosomal subunit protein eL33A / Large ribosomal subunit protein eL36A ...Large ribosomal subunit protein uL15 / Large ribosomal subunit protein eL24A / Large ribosomal subunit protein uL23 / Large ribosomal subunit protein uL10 / Large ribosomal subunit protein uL30A / Large ribosomal subunit protein uL6A / Large ribosomal subunit protein uL22A / Large ribosomal subunit protein uL24A / Large ribosomal subunit protein eL33A / Large ribosomal subunit protein eL36A / Large ribosomal subunit protein eL29 / Large ribosomal subunit protein eL15A / Large ribosomal subunit protein eL22A / Large ribosomal subunit protein uL5A / Large ribosomal subunit protein eL27A / Large ribosomal subunit protein eL31A / Ubiquitin-ribosomal protein eL40A fusion protein / Large ribosomal subunit protein eL20A / Large ribosomal subunit protein eL43A / Large ribosomal subunit protein eL42A / Large ribosomal subunit protein uL14A / Large ribosomal subunit protein uL2A / Large ribosomal subunit protein eL18A / Large ribosomal subunit protein eL19A / Large ribosomal subunit protein uL29A / Large ribosomal subunit protein uL4A / Large ribosomal subunit protein eL30 / Large ribosomal subunit protein uL3 / Large ribosomal subunit protein eL8A / Large ribosomal subunit protein uL18 / Large ribosomal subunit protein uL13A / Large ribosomal subunit protein eL14A / Large ribosomal subunit protein eL32 / Large ribosomal subunit protein uL16 / Large ribosomal subunit protein eL37A / Large ribosomal subunit protein eL38 / Large ribosomal subunit protein eL34A / Large ribosomal subunit protein eL6A / Large ribosomal subunit protein eL21A / Large ribosomal subunit protein eL13A Similarity search - Component
Biological species
Saccharomyces cerevisiae (brewer's yeast)
Method
single particle reconstruction / cryo EM / Resolution: 2.66 Å
Journal: Nucleic Acids Res / Year: 2024 Title: Ribosomal protein RPL39L is an efficiency factor in the cotranslational folding of a subset of proteins with alpha helical domains. Authors: Arka Banerjee / Meric Ataman / Maciej Jerzy Smialek / Debdatto Mookherjee / Julius Rabl / Aleksei Mironov / Lea Mues / Ludovic Enkler / Mairene Coto-Llerena / Alexander Schmidt / Daniel ...Authors: Arka Banerjee / Meric Ataman / Maciej Jerzy Smialek / Debdatto Mookherjee / Julius Rabl / Aleksei Mironov / Lea Mues / Ludovic Enkler / Mairene Coto-Llerena / Alexander Schmidt / Daniel Boehringer / Salvatore Piscuoglio / Anne Spang / Nitish Mittal / Mihaela Zavolan / Abstract: Increasingly many studies reveal how ribosome composition can be tuned to optimally translate the transcriptome of individual cell types. In this study, we investigated the expression pattern, ...Increasingly many studies reveal how ribosome composition can be tuned to optimally translate the transcriptome of individual cell types. In this study, we investigated the expression pattern, structure within the ribosome and effect on protein synthesis of the ribosomal protein paralog 39L (RPL39L). With a novel mass spectrometric approach we revealed the expression of RPL39L protein beyond mouse germ cells, in human pluripotent cells, cancer cell lines and tissue samples. We generated RPL39L knock-out mouse embryonic stem cell (mESC) lines and demonstrated that RPL39L impacts the dynamics of translation, to support the pluripotency and differentiation, spontaneous and along the germ cell lineage. Most differences in protein abundance between WT and RPL39L KO lines were explained by widespread autophagy. By CryoEM analysis of purified RPL39 and RPL39L-containing ribosomes we found that, unlike RPL39, RPL39L has two distinct conformations in the exposed segment of the nascent peptide exit tunnel, creating a distinct hydrophobic patch that has been predicted to support the efficient co-translational folding of alpha helices. Our study shows that ribosomal protein paralogs provide switchable modular components that can tune translation to the protein production needs of individual cell types.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi