- EMDB-16627: Human heparan sulfate N-deacetylase-N-sulfotransferase 1 in compl... -
+
データを開く
IDまたはキーワード:
読み込み中...
-
基本情報
登録情報
データベース: EMDB / ID: EMD-16627
タイトル
Human heparan sulfate N-deacetylase-N-sulfotransferase 1 in complex with calcium, 3'-phosphoadenosine-5'-phosphosulfate, and nanobody nAb7 (locally refined map of N-terminal and deacetylase domains)
マップデータ
locally refined map - NDST1 N-terminal and deacetylase domains
試料
複合体: Complex of heparan sulfate N-deacetylase-N-sulfotransferase 1 (with ligands PAP and Mg2+) and nanobody nAb7
Engineering and Physical Sciences Research Council
英国
Wellcome Trust
060208/Z/00/Z
英国
Wellcome Trust
093305/Z/10/Z
英国
Wellcome Trust
203141/Z/16/Z
英国
Wellcome Trust
218579/Z/19/Z
英国
Biotechnology and Biological Sciences Research Council (BBSRC)
BB/V018523/1
英国
引用
ジャーナル: Nat Commun / 年: 2024 タイトル: Structural and mechanistic characterization of bifunctional heparan sulfate N-deacetylase-N-sulfotransferase 1. 著者: Courtney J Mycroft-West / Sahar Abdelkarim / Helen M E Duyvesteyn / Neha S Gandhi / Mark A Skidmore / Raymond J Owens / Liang Wu / 要旨: Heparan sulfate (HS) polysaccharides are major constituents of the extracellular matrix, which are involved in myriad structural and signaling processes. Mature HS polysaccharides contain complex, ...Heparan sulfate (HS) polysaccharides are major constituents of the extracellular matrix, which are involved in myriad structural and signaling processes. Mature HS polysaccharides contain complex, non-templated patterns of sulfation and epimerization, which mediate interactions with diverse protein partners. Complex HS modifications form around initial clusters of glucosamine-N-sulfate (GlcNS) on nascent polysaccharide chains, but the mechanistic basis underpinning incorporation of GlcNS itself into HS remains unclear. Here, we determine cryo-electron microscopy structures of human N-deacetylase-N-sulfotransferase (NDST)1, the bifunctional enzyme primarily responsible for initial GlcNS modification of HS. Our structures reveal the architecture of both NDST1 deacetylase and sulfotransferase catalytic domains, alongside a non-catalytic N-terminal domain. The two catalytic domains of NDST1 adopt a distinct back-to-back topology that limits direct cooperativity. Binding analyses, aided by activity-modulating nanobodies, suggest that anchoring of the substrate at the sulfotransferase domain initiates the NDST1 catalytic cycle, providing a plausible mechanism for cooperativity despite spatial domain separation. Our data shed light on key determinants of NDST1 activity, and describe tools to probe NDST1 function in vitro and in vivo.