[English] 日本語

- PDB-9dj8: RNA-nsp9 bound to the NiRAN domain of the E-RTC with an empty G-pocket -
+
Open data
-
Basic information
Entry | Database: PDB / ID: 9dj8 | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | RNA-nsp9 bound to the NiRAN domain of the E-RTC with an empty G-pocket | |||||||||||||||||||||||||||
![]() |
| |||||||||||||||||||||||||||
![]() | VIRAL PROTEIN / RdRp / nsp9 / NiRAN / RNA-nsp9 / nsp12 / RTC | |||||||||||||||||||||||||||
Function / homology | ![]() protein guanylyltransferase activity / RNA endonuclease activity producing 3'-phosphomonoesters, hydrolytic mechanism / mRNA guanylyltransferase activity / 5'-3' RNA helicase activity / Lyases; Phosphorus-oxygen lyases / Assembly of the SARS-CoV-2 Replication-Transcription Complex (RTC) / symbiont-mediated suppression of host cytoplasmic pattern recognition receptor signaling pathway via inhibition of TBK1 activity / Maturation of replicase proteins / TRAF3-dependent IRF activation pathway / ISG15-specific peptidase activity ...protein guanylyltransferase activity / RNA endonuclease activity producing 3'-phosphomonoesters, hydrolytic mechanism / mRNA guanylyltransferase activity / 5'-3' RNA helicase activity / Lyases; Phosphorus-oxygen lyases / Assembly of the SARS-CoV-2 Replication-Transcription Complex (RTC) / symbiont-mediated suppression of host cytoplasmic pattern recognition receptor signaling pathway via inhibition of TBK1 activity / Maturation of replicase proteins / TRAF3-dependent IRF activation pathway / ISG15-specific peptidase activity / Transcription of SARS-CoV-2 sgRNAs / Translation of Replicase and Assembly of the Replication Transcription Complex / snRNP Assembly / Replication of the SARS-CoV-2 genome / Hydrolases; Acting on ester bonds; Exoribonucleases producing 5'-phosphomonoesters / host cell endoplasmic reticulum-Golgi intermediate compartment / double membrane vesicle viral factory outer membrane / SARS coronavirus main proteinase / 5'-3' DNA helicase activity / 3'-5'-RNA exonuclease activity / host cell endosome / symbiont-mediated degradation of host mRNA / mRNA guanylyltransferase / symbiont-mediated suppression of host ISG15-protein conjugation / G-quadruplex RNA binding / symbiont-mediated suppression of host toll-like receptor signaling pathway / symbiont-mediated suppression of host cytoplasmic pattern recognition receptor signaling pathway via inhibition of IRF3 activity / omega peptidase activity / mRNA (guanine-N7)-methyltransferase / SARS-CoV-2 modulates host translation machinery / methyltransferase cap1 / host cell Golgi apparatus / symbiont-mediated suppression of host NF-kappaB cascade / symbiont-mediated perturbation of host ubiquitin-like protein modification / DNA helicase / methyltransferase cap1 activity / ubiquitinyl hydrolase 1 / cysteine-type deubiquitinase activity / mRNA 5'-cap (guanine-N7-)-methyltransferase activity / Hydrolases; Acting on peptide bonds (peptidases); Cysteine endopeptidases / single-stranded RNA binding / host cell perinuclear region of cytoplasm / regulation of autophagy / viral protein processing / lyase activity / host cell endoplasmic reticulum membrane / RNA helicase / symbiont-mediated suppression of host type I interferon-mediated signaling pathway / symbiont-mediated suppression of host gene expression / copper ion binding / viral translational frameshifting / symbiont-mediated activation of host autophagy / RNA-directed RNA polymerase / cysteine-type endopeptidase activity / viral RNA genome replication / RNA-directed RNA polymerase activity / DNA-templated transcription / lipid binding / SARS-CoV-2 activates/modulates innate and adaptive immune responses / host cell nucleus / ATP hydrolysis activity / proteolysis / RNA binding / zinc ion binding / ATP binding / membrane Similarity search - Function | |||||||||||||||||||||||||||
Biological species | ![]() ![]() | |||||||||||||||||||||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.58 Å | |||||||||||||||||||||||||||
![]() | Small, G.I. / Darst, S.A. / Campbell, E.A. | |||||||||||||||||||||||||||
Funding support | ![]()
| |||||||||||||||||||||||||||
![]() | ![]() Title: The mechanism for GTP-mediated RNA capping by the SARS-CoV-2 NiRAN domain remains unresolved. Authors: Gabriel I Small / Seth A Darst / Elizabeth A Campbell / ![]() Abstract: The Nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain initiates mRNA capping in coronaviruses through a GDP-polyribonucleotidyltransferase reaction, with RNA covalently linked to nsp9. ...The Nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain initiates mRNA capping in coronaviruses through a GDP-polyribonucleotidyltransferase reaction, with RNA covalently linked to nsp9. GDP is the preferred substrate for this reaction, but the NiRAN domain can also utilize GTP to produce an authentic 5' RNA cap structure, though the GTP-mediated mechanism is unclear. Yan and colleagues claimed to have delineated the reaction mechanism from the analysis of a cryoelectron microscopy (cryo-EM) structure of a trapped catalytic intermediate of the SARS-CoV-2 NiRAN domain with a β-γ-non-hydrolyzable GTP analog (GMPPNP) and RNA-nsp9 (PDB: 8GWE). We show that the cryo-EM data used to derive PDB: 8GWE do not support the presence of GMPPNP in the NiRAN active site, and the resulting atomic model is incompatible with fundamental chemical principles. We conclude that Yan and colleagues' conclusions are not experimentally supported and the mechanism for GTP-mediated RNA capping by the SARS-CoV-2 NiRAN domain remains unresolved. This Matters Arising paper is in response to Yan et al. (2022), published in Cell. See also the response by Huang et al. (2025), published in this issue. | |||||||||||||||||||||||||||
History |
|
-
Structure visualization
Structure viewer | Molecule: ![]() ![]() |
---|
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 357.1 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 292 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Summary document | ![]() | 1.2 MB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 1.2 MB | Display | |
Data in XML | ![]() | 45.3 KB | Display | |
Data in CIF | ![]() | 68.2 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 46936MC M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
#1: Protein | Mass: 106780.977 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() Gene: rep, 1a-1b / Production host: ![]() ![]() | ||||||
---|---|---|---|---|---|---|---|
#2: Protein | Mass: 12391.171 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() Gene: rep, 1a-1b / Production host: ![]() ![]() | ||||||
#3: Chemical | #4: Chemical | ChemComp-AMP / | Has ligand of interest | Y | Has protein modification | N | |
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component | Name: E-RTC with RNA-nsp9 bound to the NiRAN domain. / Type: COMPLEX / Entity ID: #1-#2 / Source: RECOMBINANT |
---|---|
Source (natural) | Organism: ![]() ![]() |
Source (recombinant) | Organism: ![]() ![]() |
Buffer solution | pH: 7 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: TUNGSTEN HAIRPIN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM |
Electron lens | Mode: BRIGHT FIELD / Nominal defocus max: 2000 nm / Nominal defocus min: 1000 nm |
Image recording | Electron dose: 60 e/Å2 / Film or detector model: GATAN K2 QUANTUM (4k x 4k) |
-
Processing
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION |
---|---|
3D reconstruction | Resolution: 2.58 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 215570 / Symmetry type: POINT |