[English] 日本語
Yorodumi
- PDB-8x7i: Cryo-EM structures of RNF168/UbcH5c-Ub in complex with H2AK13Ub n... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8x7i
TitleCryo-EM structures of RNF168/UbcH5c-Ub in complex with H2AK13Ub nucleosomes determined by intein-based E2-Ub-NCP conjugation strategy
Components
  • (DNA (147-MER)) x 2
  • (Histone H2A type 1- ...) x 2
  • E3 ubiquitin-protein ligase RNF168
  • Histone H2B type 1-K
  • Histone H3.2
  • Histone H4
  • Ubiquitin
  • Ubiquitin-conjugating enzyme E2 D3
KeywordsNUCLEAR PROTEIN/DNA / RNF168 / nucleosome / H2AK13/15 ubiquitination / NUCLEAR PROTEIN / NUCLEAR PROTEIN-DNA complex
Function / homology
Function and homology information


histone H2AK15 ubiquitin ligase activity / histone ubiquitin ligase activity / (E3-independent) E2 ubiquitin-conjugating enzyme / Signaling by BMP / protein K6-linked ubiquitination / double-strand break repair via classical nonhomologous end joining / isotype switching / protein K11-linked ubiquitination / Formation of the ternary complex, and subsequently, the 43S complex / positive regulation of protein targeting to mitochondrion ...histone H2AK15 ubiquitin ligase activity / histone ubiquitin ligase activity / (E3-independent) E2 ubiquitin-conjugating enzyme / Signaling by BMP / protein K6-linked ubiquitination / double-strand break repair via classical nonhomologous end joining / isotype switching / protein K11-linked ubiquitination / Formation of the ternary complex, and subsequently, the 43S complex / positive regulation of protein targeting to mitochondrion / Ribosomal scanning and start codon recognition / E2 ubiquitin-conjugating enzyme / response to ionizing radiation / K63-linked polyubiquitin modification-dependent protein binding / Translation initiation complex formation / DNA repair-dependent chromatin remodeling / negative regulation of transcription elongation by RNA polymerase II / protein monoubiquitination / SARS-CoV-1 modulates host translation machinery / Peptide chain elongation / ubiquitin conjugating enzyme activity / Selenocysteine synthesis / Formation of a pool of free 40S subunits / protein K63-linked ubiquitination / Eukaryotic Translation Termination / Response of EIF2AK4 (GCN2) to amino acid deficiency / SRP-dependent cotranslational protein targeting to membrane / Viral mRNA Translation / negative regulation of BMP signaling pathway / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / GTP hydrolysis and joining of the 60S ribosomal subunit / L13a-mediated translational silencing of Ceruloplasmin expression / negative regulation of megakaryocyte differentiation / nucleosome binding / Major pathway of rRNA processing in the nucleolus and cytosol / protein localization to CENP-A containing chromatin / protein autoubiquitination / protein K48-linked ubiquitination / Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) / Chromatin modifying enzymes / interstrand cross-link repair / Replacement of protamines by nucleosomes in the male pronucleus / SUMOylation of DNA damage response and repair proteins / CENP-A containing nucleosome / Packaging Of Telomere Ends / ubiquitin ligase complex / Recognition and association of DNA glycosylase with site containing an affected purine / Cleavage of the damaged purine / Maturation of protein E / Maturation of protein E / ER Quality Control Compartment (ERQC) / Deposition of new CENPA-containing nucleosomes at the centromere / Myoclonic epilepsy of Lafora / nucleosomal DNA binding / FLT3 signaling by CBL mutants / Prevention of phagosomal-lysosomal fusion / IRAK2 mediated activation of TAK1 complex / Alpha-protein kinase 1 signaling pathway / Recognition and association of DNA glycosylase with site containing an affected pyrimidine / Cleavage of the damaged pyrimidine / Glycogen synthesis / IRAK1 recruits IKK complex / IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation / Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 / Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation / Membrane binding and targetting of GAG proteins / Endosomal Sorting Complex Required For Transport (ESCRT) / Inhibition of DNA recombination at telomere / IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation / TICAM1,TRAF6-dependent induction of TAK1 complex / Negative regulation of FLT3 / Constitutive Signaling by NOTCH1 HD Domain Mutants / PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 / TICAM1-dependent activation of IRF3/IRF7 / NOTCH2 Activation and Transmission of Signal to the Nucleus / cytosolic ribosome / Regulation of FZD by ubiquitination / APC/C:Cdc20 mediated degradation of Cyclin B / telomere organization / Meiotic synapsis / Downregulation of ERBB4 signaling / p75NTR recruits signalling complexes / APC-Cdc20 mediated degradation of Nek2A / Interleukin-7 signaling / TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling / TRAF6-mediated induction of TAK1 complex within TLR4 complex / RNA Polymerase I Promoter Opening / Regulation of innate immune responses to cytosolic DNA / InlA-mediated entry of Listeria monocytogenes into host cells / positive regulation of DNA repair / Regulation of pyruvate metabolism / epigenetic regulation of gene expression / Downregulation of ERBB2:ERBB3 signaling / NF-kB is activated and signals survival / VLDLR internalisation and degradation / Pexophagy / Assembly of the ORC complex at the origin of replication / NRIF signals cell death from the nucleus / Regulation of PTEN localization / SUMOylation of chromatin organization proteins
Similarity search - Function
E3 ubiquitin-protein ligase RNF168 / : / Prokaryotic RING finger family 4 / Ubiquitin-conjugating enzyme, active site / Ubiquitin-conjugating (UBC) active site signature. / Ubiquitin-conjugating enzyme E2 / Ubiquitin-conjugating enzyme / Ubiquitin-conjugating (UBC) core domain profile. / Ubiquitin-conjugating enzyme E2, catalytic domain homologues / Ubiquitin-conjugating enzyme/RWD-like ...E3 ubiquitin-protein ligase RNF168 / : / Prokaryotic RING finger family 4 / Ubiquitin-conjugating enzyme, active site / Ubiquitin-conjugating (UBC) active site signature. / Ubiquitin-conjugating enzyme E2 / Ubiquitin-conjugating enzyme / Ubiquitin-conjugating (UBC) core domain profile. / Ubiquitin-conjugating enzyme E2, catalytic domain homologues / Ubiquitin-conjugating enzyme/RWD-like / S27a-like superfamily / Ribosomal protein S27a / Ribosomal protein S27a / Ribosomal protein S27a / Ring finger / Histone H2B signature. / Histone H2B / Histone H2B / Histone H2A conserved site / Histone H2A signature. / Histone H2A, C-terminal domain / C-terminus of histone H2A / Histone H2A / Histone 2A / Histone H4, conserved site / Histone H4 signature. / TATA box binding protein associated factor / TATA box binding protein associated factor (TAF), histone-like fold domain / Histone H4 / Histone H4 / CENP-T/Histone H4, histone fold / Centromere kinetochore component CENP-T histone fold / Histone H3 signature 1. / Zinc finger RING-type profile. / Histone H3 signature 2. / Histone H3 / Zinc finger, RING-type / Histone H3/CENP-A / : / Histone H2A/H2B/H3 / Core histone H2A/H2B/H3/H4 / Ubiquitin domain signature. / Ubiquitin conserved site / Ubiquitin domain / Histone-fold / Ubiquitin family / Ubiquitin homologues / Ubiquitin domain profile. / Ubiquitin-like domain / Zinc-binding ribosomal protein / Zinc finger, RING/FYVE/PHD-type / Ubiquitin-like domain superfamily
Similarity search - Domain/homology
DNA / DNA (> 10) / DNA (> 100) / Histone H2B type 1-K / Histone H2A type 1-B/E / Ubiquitin-conjugating enzyme E2 D3 / Histone H4 / Ubiquitin-ribosomal protein eS31 fusion protein / Histone H3.2 / E3 ubiquitin-protein ligase RNF168
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.27 Å
AuthorsAi, H.S. / Tong, Z.B. / Deng, Z.H. / Pan, M. / Liu, L.
Funding support China, 1items
OrganizationGrant numberCountry
National Natural Science Foundation of China (NSFC)22137005, 92253302, 22227810 for L. Liu, and 22277073 for M. Pan China
CitationJournal: Biorxiv / Year: 2024
Title: Capturing Snapshots of Nucleosomal H2A K13/K15 Ubiquitination Mediated by the Monomeric E3 Ligase RNF168
Authors: Ai, H. / Tong, Z. / Deng, Z. / Shi, Q. / Tao, S. / Liang, J. / Sun, M. / Wu, X. / Zheng, Q. / Liang, L. / Li, J.B. / Gao, S. / Tian, C. / Liu, L. / Pan, M.
History
DepositionNov 24, 2023Deposition site: PDBJ / Processing site: PDBJ
Revision 1.0Aug 7, 2024Provider: repository / Type: Initial release

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Histone H3.2
B: Histone H4
C: Histone H2A type 1-B/E
E: Histone H3.2
F: Histone H4
G: Histone H2A type 1-B/E
I: DNA (147-MER)
J: DNA (147-MER)
D: Histone H2B type 1-K
H: Histone H2B type 1-K
K: Ubiquitin-conjugating enzyme E2 D3
L: E3 ubiquitin-protein ligase RNF168
M: Ubiquitin
hetero molecules


Theoretical massNumber of molelcules
Total (without water)216,26215
Polymers216,13113
Non-polymers1312
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy, not applicable
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

-
Protein , 6 types, 9 molecules AEBFDHKLM

#1: Protein Histone H3.2 / H3-clustered histone 13 / H3-clustered histone 14 / H3-clustered histone 15 / Histone H3/m / Histone H3/o


Mass: 11530.447 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human)
Gene: H3C15, HIST2H3A, H3C14, H3F2, H3FM, HIST2H3C, H3C13, HIST2H3D
Production host: Escherichia coli (E. coli) / References: UniProt: Q71DI3
#2: Protein Histone H4


Mass: 9509.197 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human)
Gene: H4C1, H4/A, H4FA, HIST1H4A, H4C2, H4/I, H4FI, HIST1H4B, H4C3, H4/G, H4FG, HIST1H4C, H4C4, H4/B, H4FB, HIST1H4D, H4C5, H4/J, H4FJ, HIST1H4E, H4C6, H4/C, H4FC, HIST1H4F, H4C8, H4/H, H4FH, ...Gene: H4C1, H4/A, H4FA, HIST1H4A, H4C2, H4/I, H4FI, HIST1H4B, H4C3, H4/G, H4FG, HIST1H4C, H4C4, H4/B, H4FB, HIST1H4D, H4C5, H4/J, H4FJ, HIST1H4E, H4C6, H4/C, H4FC, HIST1H4F, H4C8, H4/H, H4FH, HIST1H4H, H4C9, H4/M, H4FM, HIST1H4I, H4C11, H4/E, H4FE, HIST1H4J, H4C12, H4/D, H4FD, HIST1H4K, H4C13, H4/K, H4FK, HIST1H4L, H4C14, H4/N, H4F2, H4FN, HIST2H4, HIST2H4A, H4C15, H4/O, H4FO, HIST2H4B, H4C16, H4-16, HIST4H4
Production host: Escherichia coli (E. coli) / References: UniProt: P62805
#7: Protein Histone H2B type 1-K


Mass: 10477.994 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: H2BC12 / Production host: Escherichia coli (E. coli) / References: UniProt: O60814
#8: Protein Ubiquitin-conjugating enzyme E2 D3 / (E3-independent) E2 ubiquitin-conjugating enzyme D3 / E2 ubiquitin-conjugating enzyme D3 / ...(E3-independent) E2 ubiquitin-conjugating enzyme D3 / E2 ubiquitin-conjugating enzyme D3 / Ubiquitin carrier protein D3 / Ubiquitin-conjugating enzyme E2(17)KB 3 / Ubiquitin-conjugating enzyme E2-17 kDa 3 / Ubiquitin-protein ligase D3


Mass: 16657.938 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: UBE2D3, UBC5C, UBCH5C / Production host: Escherichia coli (E. coli)
References: UniProt: P61077, E2 ubiquitin-conjugating enzyme, (E3-independent) E2 ubiquitin-conjugating enzyme
#9: Protein E3 ubiquitin-protein ligase RNF168 / hRNF168 / RING finger protein 168 / RING-type E3 ubiquitin transferase RNF168


Mass: 12987.123 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: RNF168 / Production host: Escherichia coli (E. coli)
References: UniProt: Q8IYW5, RING-type E3 ubiquitin transferase
#10: Protein Ubiquitin


Mass: 8622.922 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: RPS27A, UBA80, UBCEP1 / Production host: Escherichia coli (E. coli) / References: UniProt: P62979

-
Histone H2A type 1- ... , 2 types, 2 molecules CG

#3: Protein Histone H2A type 1-B/E / Histone H2A.2 / Histone H2A/a / Histone H2A/m


Mass: 12141.195 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: H2AC4, H2AFM, HIST1H2AB, H2AC8, H2AFA, HIST1H2AE / Production host: Escherichia coli (E. coli) / References: UniProt: P04908
#4: Protein Histone H2A type 1-B/E / Histone H2A.2 / Histone H2A/a / Histone H2A/m


Mass: 11936.948 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: H2AC4, H2AFM, HIST1H2AB, H2AC8, H2AFA, HIST1H2AE / Production host: Escherichia coli (E. coli) / References: UniProt: P04908

-
DNA chain , 2 types, 2 molecules IJ

#5: DNA chain DNA (147-MER)


Mass: 45604.047 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Escherichia coli (E. coli)
#6: DNA chain DNA (147-MER)


Mass: 45145.754 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Escherichia coli (E. coli)

-
Non-polymers , 1 types, 2 molecules

#11: Chemical ChemComp-ZN / ZINC ION


Mass: 65.409 Da / Num. of mol.: 2 / Source method: obtained synthetically / Formula: Zn / Feature type: SUBJECT OF INVESTIGATION

-
Details

Has ligand of interestY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: RNF168/UbcH5c-Ub/nucleosomes determined by intein-based E2-Ub-NCP conjugation strategy
Type: COMPLEX / Entity ID: #1-#10 / Source: RECOMBINANT
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Escherichia coli (E. coli)
Buffer solutionpH: 7.5
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal defocus max: 2000 nm / Nominal defocus min: 1000 nm
Image recordingElectron dose: 50 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

CTF correctionType: NONE
3D reconstructionResolution: 3.27 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 178994 / Symmetry type: POINT
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00615165
ELECTRON MICROSCOPYf_angle_d0.57621781
ELECTRON MICROSCOPYf_dihedral_angle_d25.6746114
ELECTRON MICROSCOPYf_chiral_restr0.0372489
ELECTRON MICROSCOPYf_plane_restr0.0041746

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more