[English] 日本語
Yorodumi
- PDB-8uh6: Degrader-induced complex between PTPN2 and CRBN-DDB1 -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8uh6
TitleDegrader-induced complex between PTPN2 and CRBN-DDB1
Components
  • DNA damage-binding protein 1
  • Protein cereblon
  • Tyrosine-protein phosphatase non-receptor type 2
KeywordsHYDROLASE
Function / homology
Function and homology information


negative regulation of interleukin-2-mediated signaling pathway / negative regulation of interleukin-4-mediated signaling pathway / negative regulation of positive thymic T cell selection / positive regulation of PERK-mediated unfolded protein response / negative regulation of platelet-derived growth factor receptor-beta signaling pathway / negative regulation of macrophage colony-stimulating factor signaling pathway / negative regulation of interleukin-6-mediated signaling pathway / negative regulation of macrophage differentiation / regulation of type II interferon-mediated signaling pathway / negative regulation of chemotaxis ...negative regulation of interleukin-2-mediated signaling pathway / negative regulation of interleukin-4-mediated signaling pathway / negative regulation of positive thymic T cell selection / positive regulation of PERK-mediated unfolded protein response / negative regulation of platelet-derived growth factor receptor-beta signaling pathway / negative regulation of macrophage colony-stimulating factor signaling pathway / negative regulation of interleukin-6-mediated signaling pathway / negative regulation of macrophage differentiation / regulation of type II interferon-mediated signaling pathway / negative regulation of chemotaxis / negative regulation of tyrosine phosphorylation of STAT protein / negative regulation of monoatomic ion transmembrane transport / positive regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway / negative regulation of receptor signaling pathway via JAK-STAT / positive regulation by virus of viral protein levels in host cell / spindle assembly involved in female meiosis / epigenetic programming in the zygotic pronuclei / Cul4-RING E3 ubiquitin ligase complex / UV-damage excision repair / Interleukin-37 signaling / biological process involved in interaction with symbiont / syntaxin binding / regulation of mitotic cell cycle phase transition / WD40-repeat domain binding / Cul4A-RING E3 ubiquitin ligase complex / negative regulation of type I interferon-mediated signaling pathway / ubiquitin ligase complex scaffold activity / Cul4B-RING E3 ubiquitin ligase complex / negative regulation of T cell receptor signaling pathway / STAT family protein binding / regulation of hepatocyte growth factor receptor signaling pathway / insulin receptor recycling / negative regulation of reproductive process / negative regulation of developmental process / negative regulation of epidermal growth factor receptor signaling pathway / negative regulation of type II interferon-mediated signaling pathway / locomotory exploration behavior / cullin family protein binding / viral release from host cell / endoplasmic reticulum-Golgi intermediate compartment / negative regulation of lipid storage / T cell differentiation / non-membrane spanning protein tyrosine phosphatase activity / peptidyl-tyrosine dephosphorylation / positive regulation of Wnt signaling pathway / negative regulation of tumor necrosis factor-mediated signaling pathway / ectopic germ cell programmed cell death / proteasomal protein catabolic process / negative regulation of protein-containing complex assembly / positive regulation of viral genome replication / Regulation of IFNG signaling / positive regulation of gluconeogenesis / negative regulation of insulin receptor signaling pathway / B cell differentiation / protein-tyrosine-phosphatase / erythrocyte differentiation / protein tyrosine phosphatase activity / endosome lumen / nucleotide-excision repair / Recognition of DNA damage by PCNA-containing replication complex / DNA Damage Recognition in GG-NER / positive regulation of protein-containing complex assembly / PKR-mediated signaling / regulation of circadian rhythm / Negative regulation of MET activity / Transcription-Coupled Nucleotide Excision Repair (TC-NER) / Formation of TC-NER Pre-Incision Complex / Dual Incision in GG-NER / Wnt signaling pathway / receptor tyrosine kinase binding / negative regulation of ERK1 and ERK2 cascade / negative regulation of inflammatory response / Formation of Incision Complex in GG-NER / Dual incision in TC-NER / Gap-filling DNA repair synthesis and ligation in TC-NER / positive regulation of protein catabolic process / cellular response to UV / integrin binding / rhythmic process / insulin receptor signaling pathway / glucose homeostasis / Neddylation / protein-macromolecule adaptor activity / site of double-strand break / ubiquitin-dependent protein catabolic process / proteasome-mediated ubiquitin-dependent protein catabolic process / transmembrane transporter binding / Potential therapeutics for SARS / damaged DNA binding / chromosome, telomeric region / protein ubiquitination / negative regulation of cell population proliferation / DNA repair / DNA damage response / protein-containing complex binding / nucleolus / negative regulation of apoptotic process / apoptotic process / protein kinase binding / perinuclear region of cytoplasm
Similarity search - Function
Yippee/Mis18/Cereblon / Yippee zinc-binding/DNA-binding /Mis18, centromere assembly / CULT domain / CULT domain profile. / Lon protease, N-terminal domain superfamily / Lon N-terminal domain profile. / Lon protease, N-terminal domain / ATP-dependent protease La (LON) substrate-binding domain / Found in ATP-dependent protease La (LON) / Cleavage/polyadenylation specificity factor, A subunit, N-terminal ...Yippee/Mis18/Cereblon / Yippee zinc-binding/DNA-binding /Mis18, centromere assembly / CULT domain / CULT domain profile. / Lon protease, N-terminal domain superfamily / Lon N-terminal domain profile. / Lon protease, N-terminal domain / ATP-dependent protease La (LON) substrate-binding domain / Found in ATP-dependent protease La (LON) / Cleavage/polyadenylation specificity factor, A subunit, N-terminal / : / Cleavage/polyadenylation specificity factor, A subunit, C-terminal / Mono-functional DNA-alkylating methyl methanesulfonate N-term / CPSF A subunit region / Protein-tyrosine phosphatase, non-receptor type-1/2 / : / PUA-like superfamily / Protein tyrosine phosphatase, catalytic domain / PTP type protein phosphatase domain profile. / Tyrosine-specific protein phosphatase, PTPase domain / Protein-tyrosine phosphatase / Protein-tyrosine phosphatase, catalytic / Protein tyrosine phosphatase, catalytic domain motif / Tyrosine specific protein phosphatases active site. / Protein-tyrosine phosphatase, active site / Tyrosine-specific protein phosphatases domain / Tyrosine specific protein phosphatases domain profile. / Protein-tyrosine phosphatase-like / WD40-repeat-containing domain superfamily / WD40/YVTN repeat-like-containing domain superfamily
Similarity search - Domain/homology
: / Tyrosine-protein phosphatase non-receptor type 2 / DNA damage-binding protein 1 / Protein cereblon
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.3 Å
AuthorsCatalano, C. / Bratkowski, M. / Scapin, G. / Hao, Q.
Funding support1items
OrganizationGrant numberCountry
Not funded
CitationJournal: Commun Chem / Year: 2024
Title: Mechanistic insights into a heterobifunctional degrader-induced PTPN2/N1 complex.
Authors: Qi Hao / Manoj K Rathinaswamy / Kelly L Klinge / Matthew Bratkowski / Amirhossein Mafi / Christina K Baumgartner / Keith M Hamel / Gesine K Veits / Rinku Jain / Claudio Catalano / Mark ...Authors: Qi Hao / Manoj K Rathinaswamy / Kelly L Klinge / Matthew Bratkowski / Amirhossein Mafi / Christina K Baumgartner / Keith M Hamel / Gesine K Veits / Rinku Jain / Claudio Catalano / Mark Fitzgerald / Alexander W Hird / Eunice Park / Harit U Vora / James A Henderson / Kenton Longenecker / Charles W Hutchins / Wei Qiu / Giovanna Scapin / Qi Sun / Vincent S Stoll / Chaohong Sun / Ping Li / Dan Eaton / David Stokoe / Stewart L Fisher / Christopher G Nasveschuk / Marcia Paddock / Michael E Kort /
Abstract: PTPN2 (protein tyrosine phosphatase non-receptor type 2, or TC-PTP) and PTPN1 are attractive immuno-oncology targets, with the deletion of Ptpn1 and Ptpn2 improving response to immunotherapy in ...PTPN2 (protein tyrosine phosphatase non-receptor type 2, or TC-PTP) and PTPN1 are attractive immuno-oncology targets, with the deletion of Ptpn1 and Ptpn2 improving response to immunotherapy in disease models. Targeted protein degradation has emerged as a promising approach to drug challenging targets including phosphatases. We developed potent PTPN2/N1 dual heterobifunctional degraders (Cmpd-1 and Cmpd-2) which facilitate efficient complex assembly with E3 ubiquitin ligase CRL4, and mediate potent PTPN2/N1 degradation in cells and mice. To provide mechanistic insights into the cooperative complex formation introduced by degraders, we employed a combination of structural approaches. Our crystal structure reveals how PTPN2 is recognized by the tri-substituted thiophene moiety of the degrader. We further determined a high-resolution structure of DDB1-CRBN/Cmpd-1/PTPN2 using single-particle cryo-electron microscopy (cryo-EM). This structure reveals that the degrader induces proximity between CRBN and PTPN2, albeit the large conformational heterogeneity of this ternary complex. The molecular dynamic (MD)-simulations constructed based on the cryo-EM structure exhibited a large rigid body movement of PTPN2 and illustrated the dynamic interactions between PTPN2 and CRBN. Together, our study demonstrates the development of PTPN2/N1 heterobifunctional degraders with potential applications in cancer immunotherapy. Furthermore, the developed structural workflow could help to understand the dynamic nature of degrader-induced cooperative ternary complexes.
History
DepositionOct 6, 2023Deposition site: RCSB / Processing site: RCSB
Revision 1.0Sep 11, 2024Provider: repository / Type: Initial release

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: DNA damage-binding protein 1
B: Protein cereblon
C: Tyrosine-protein phosphatase non-receptor type 2
hetero molecules


Theoretical massNumber of molelcules
Total (without water)219,1195
Polymers218,0773
Non-polymers1,0422
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy, not applicable
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein DNA damage-binding protein 1


Mass: 128333.820 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: DDB1 / Production host: Spodoptera frugiperda (fall armyworm) / References: UniProt: Q16531
#2: Protein Protein cereblon


Mass: 51777.020 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: CRBN / Production host: Spodoptera frugiperda (fall armyworm) / References: UniProt: Q96SW2
#3: Protein Tyrosine-protein phosphatase non-receptor type 2 / T-cell protein-tyrosine phosphatase / TCPTP


Mass: 37966.000 Da / Num. of mol.: 1 / Fragment: UNP residues 1-314
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: PTPN2, PTPT / Production host: Escherichia coli (E. coli) / References: UniProt: P17706, protein-tyrosine-phosphatase
#4: Chemical ChemComp-WO8 / (5P)-3-(carboxymethoxy)-4-chloro-5-(3-{[(4S)-1-({3-[(4-{1-[(3R)-2,6-dioxopiperidin-3-yl]-3-methyl-2-oxo-2,3-dihydro-1H-benzimidazol-5-yl}piperidine-1-carbonyl)amino]phenyl}methanesulfonyl)-2,2-dimethylpiperidin-4-yl]amino}phenyl)thiophene-2-carboxylic acid


Mass: 976.512 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: C46H50ClN7O11S2 / Feature type: SUBJECT OF INVESTIGATION
#5: Chemical ChemComp-ZN / ZINC ION


Mass: 65.409 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: Zn
Has ligand of interestY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: CRBN-DDB1-PTPN2 complex / Type: COMPLEX / Entity ID: #1-#3 / Source: RECOMBINANT
Molecular weightValue: 0.21781996 MDa / Experimental value: NO
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Spodoptera frugiperda (fall armyworm)
Buffer solutionpH: 7.4
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal defocus max: 2000 nm / Nominal defocus min: 1000 nm
Image recordingElectron dose: 36.09 e/Å2 / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k)

-
Processing

CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 3.3 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 69542 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbjlvh1.pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more