[English] 日本語
Yorodumi
- PDB-8era: RMC-5552 in complex with mTORC1 and FKBP12 -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8era
TitleRMC-5552 in complex with mTORC1 and FKBP12
Components
  • Peptidyl-prolyl cis-trans isomerase FKBP1A
  • Regulatory-associated protein of mTOR
  • Serine/threonine-protein kinase mTOR
  • Target of rapamycin complex subunit LST8
KeywordsCOMPLEX (ISOMERASE/KINASE) / Antitumor / mTORC1 / COMPLEX (ISOMERASE-KINASE) complex
Function / homology
Function and homology information


positive regulation of cytoplasmic translational initiation / positive regulation of pentose-phosphate shunt / RNA polymerase III type 1 promoter sequence-specific DNA binding / RNA polymerase III type 2 promoter sequence-specific DNA binding / T-helper 1 cell lineage commitment / regulation of locomotor rhythm / positive regulation of wound healing, spreading of epidermal cells / cellular response to leucine starvation / regulation of membrane permeability / heart valve morphogenesis ...positive regulation of cytoplasmic translational initiation / positive regulation of pentose-phosphate shunt / RNA polymerase III type 1 promoter sequence-specific DNA binding / RNA polymerase III type 2 promoter sequence-specific DNA binding / T-helper 1 cell lineage commitment / regulation of locomotor rhythm / positive regulation of wound healing, spreading of epidermal cells / cellular response to leucine starvation / regulation of membrane permeability / heart valve morphogenesis / TFIIIC-class transcription factor complex binding / negative regulation of lysosome organization / macrolide binding / RNA polymerase III type 3 promoter sequence-specific DNA binding / TORC2 complex / activin receptor binding / TORC1 complex / positive regulation of transcription of nucleolar large rRNA by RNA polymerase I / cytoplasmic side of membrane / regulation of autophagosome assembly / calcineurin-NFAT signaling cascade / nucleus localization / TORC1 signaling / voluntary musculoskeletal movement / positive regulation of odontoblast differentiation / regulation of osteoclast differentiation / positive regulation of keratinocyte migration / signaling receptor inhibitor activity / transforming growth factor beta receptor binding / TGFBR1 LBD Mutants in Cancer / cellular response to L-leucine / MTOR signalling / Amino acids regulate mTORC1 / cellular response to nutrient / energy reserve metabolic process / type I transforming growth factor beta receptor binding / Energy dependent regulation of mTOR by LKB1-AMPK / negative regulation of activin receptor signaling pathway / negative regulation of cell size / heart trabecula formation / ruffle organization / protein serine/threonine kinase inhibitor activity / positive regulation of osteoclast differentiation / cellular response to osmotic stress / terminal cisterna / ryanodine receptor complex / I-SMAD binding / enzyme-substrate adaptor activity / negative regulation of protein localization to nucleus / anoikis / regulation of amyloid precursor protein catabolic process / cardiac muscle cell development / positive regulation of transcription by RNA polymerase III / protein maturation by protein folding / negative regulation of calcineurin-NFAT signaling cascade / ventricular cardiac muscle tissue morphogenesis / 'de novo' protein folding / regulation of myelination / regulation of cell size / Macroautophagy / negative regulation of phosphoprotein phosphatase activity / positive regulation of oligodendrocyte differentiation / negative regulation of macroautophagy / FK506 binding / positive regulation of actin filament polymerization / lysosome organization / positive regulation of myotube differentiation / protein kinase activator activity / behavioral response to pain / oligodendrocyte differentiation / TGF-beta receptor signaling activates SMADs / Constitutive Signaling by AKT1 E17K in Cancer / mTORC1-mediated signalling / germ cell development / CD28 dependent PI3K/Akt signaling / cellular response to nutrient levels / positive regulation of phosphoprotein phosphatase activity / social behavior / Calcineurin activates NFAT / HSF1-dependent transactivation / regulation of immune response / positive regulation of TOR signaling / TOR signaling / neuronal action potential / positive regulation of translational initiation / response to amino acid / positive regulation of G1/S transition of mitotic cell cycle / regulation of macroautophagy / endomembrane system / 'de novo' pyrimidine nucleobase biosynthetic process / protein peptidyl-prolyl isomerization / positive regulation of epithelial to mesenchymal transition / positive regulation of lamellipodium assembly / positive regulation of lipid biosynthetic process / heart morphogenesis / cardiac muscle contraction / supramolecular fiber organization / regulation of cellular response to heat / regulation of ryanodine-sensitive calcium-release channel activity / positive regulation of stress fiber assembly
Similarity search - Function
Raptor, N-terminal CASPase-like domain / Raptor N-terminal CASPase like domain / Raptor N-terminal CASPase like domain / Regulatory associated protein of TOR / Target of rapamycin complex subunit LST8 / Domain of unknown function DUF3385, target of rapamycin protein / Serine/threonine-protein kinase mTOR domain / Domain of unknown function / FKBP12-rapamycin binding domain / Serine/threonine-protein kinase TOR ...Raptor, N-terminal CASPase-like domain / Raptor N-terminal CASPase like domain / Raptor N-terminal CASPase like domain / Regulatory associated protein of TOR / Target of rapamycin complex subunit LST8 / Domain of unknown function DUF3385, target of rapamycin protein / Serine/threonine-protein kinase mTOR domain / Domain of unknown function / FKBP12-rapamycin binding domain / Serine/threonine-protein kinase TOR / FKBP12-rapamycin binding domain superfamily / FKBP12-rapamycin binding domain / HEAT repeat / HEAT repeat / Rapamycin binding domain / PIK-related kinase, FAT / FAT domain / FATC domain / FATC / FATC domain / PIK-related kinase / FAT domain profile. / FATC domain profile. / Quinoprotein alcohol dehydrogenase-like superfamily / FKBP-type peptidyl-prolyl cis-trans isomerase domain profile. / FKBP-type peptidyl-prolyl cis-trans isomerase domain / FKBP-type peptidyl-prolyl cis-trans isomerase / Phosphatidylinositol 3- and 4-kinases signature 1. / Phosphatidylinositol 3/4-kinase, conserved site / Phosphatidylinositol 3- and 4-kinases signature 2. / Phosphatidylinositol 3-/4-kinase, catalytic domain superfamily / Phosphoinositide 3-kinase, catalytic domain / Phosphatidylinositol 3- and 4-kinase / Phosphatidylinositol 3- and 4-kinases catalytic domain profile. / Phosphatidylinositol 3-/4-kinase, catalytic domain / Peptidyl-prolyl cis-trans isomerase domain superfamily / Armadillo-like helical / Tetratricopeptide-like helical domain superfamily / Armadillo-type fold / G-protein beta WD-40 repeat / WD40 repeat, conserved site / Trp-Asp (WD) repeats signature. / Trp-Asp (WD) repeats profile. / Trp-Asp (WD) repeats circular profile. / WD domain, G-beta repeat / WD40 repeats / WD40 repeat / WD40-repeat-containing domain superfamily / WD40/YVTN repeat-like-containing domain superfamily / Protein kinase-like domain superfamily
Similarity search - Domain/homology
Chem-XYU / Chem-XZ9 / Serine/threonine-protein kinase mTOR / Peptidyl-prolyl cis-trans isomerase FKBP1A / Regulatory-associated protein of mTOR / Target of rapamycin complex subunit LST8
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.86 Å
AuthorsTomlinson, A.C.A. / Yano, J.K.
Funding support1items
OrganizationGrant numberCountry
Not funded
Citation
Journal: J Med Chem / Year: 2023
Title: Discovery of RMC-5552, a Selective Bi-Steric Inhibitor of mTORC1, for the Treatment of mTORC1-Activated Tumors.
Authors: G Leslie Burnett / Yu C Yang / James B Aggen / Jennifer Pitzen / Micah K Gliedt / Chris M Semko / Abby Marquez / James W Evans / Gang Wang / Walter S Won / Aidan C A Tomlinson / Gert Kiss / ...Authors: G Leslie Burnett / Yu C Yang / James B Aggen / Jennifer Pitzen / Micah K Gliedt / Chris M Semko / Abby Marquez / James W Evans / Gang Wang / Walter S Won / Aidan C A Tomlinson / Gert Kiss / Christos Tzitzilonis / Arun P Thottumkara / James Cregg / Kevin T Mellem / Jong S Choi / Julie C Lee / Yongyuan Zhao / Bianca J Lee / Justin G Meyerowitz / John E Knox / Jingjing Jiang / Zhican Wang / David Wildes / Zhengping Wang / Mallika Singh / Jacqueline A M Smith / Adrian L Gill /
Abstract: Hyperactivation of mTOR kinase by mutations in the PI3K/mTOR pathway or by crosstalk with other mutant cancer drivers, such as RAS, is a feature of many tumors. Multiple allosteric inhibitors of ...Hyperactivation of mTOR kinase by mutations in the PI3K/mTOR pathway or by crosstalk with other mutant cancer drivers, such as RAS, is a feature of many tumors. Multiple allosteric inhibitors of mTORC1 and orthosteric dual inhibitors of mTORC1 and mTORC2 have been developed as anticancer drugs, but their clinical utility has been limited. To address these limitations, we have developed a novel class of "bi-steric inhibitors" that interact with both the orthosteric and the allosteric binding sites in order to deepen the inhibition of mTORC1 while also preserving selectivity for mTORC1 over mTORC2. In this report, we describe the discovery and preclinical profile of the development candidate RMC-5552 and the in vivo preclinical tool compound RMC-6272. We also present evidence that selective inhibition of mTORC1 in combination with covalent inhibition of KRAS shows increased antitumor activity in a preclinical model of mutant NSCLC that exhibits resistance to KRAS inhibitor monotherapy.
History
DepositionOct 11, 2022Deposition site: RCSB / Processing site: RCSB
Revision 1.0Dec 28, 2022Provider: repository / Type: Initial release
Revision 1.1Jan 25, 2023Group: Database references / Category: citation / citation_author
Item: _citation.journal_volume / _citation.page_first ..._citation.journal_volume / _citation.page_first / _citation.page_last / _citation.year / _citation_author.identifier_ORCID
Revision 1.2Jun 19, 2024Group: Data collection / Category: chem_comp_atom / chem_comp_bond

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Serine/threonine-protein kinase mTOR
B: Peptidyl-prolyl cis-trans isomerase FKBP1A
C: Target of rapamycin complex subunit LST8
Y: Regulatory-associated protein of mTOR
hetero molecules


Theoretical massNumber of molelcules
Total (without water)487,6926
Polymers486,2924
Non-polymers1,4012
Water00
1


  • Idetical with deposited unit
  • defined by author
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

-
Protein , 4 types, 4 molecules ABCY

#1: Protein Serine/threonine-protein kinase mTOR / FK506-binding protein 12-rapamycin complex-associated protein 1 / FKBP12-rapamycin complex- ...FK506-binding protein 12-rapamycin complex-associated protein 1 / FKBP12-rapamycin complex-associated protein / Mammalian target of rapamycin / mTOR / Mechanistic target of rapamycin / Rapamycin and FKBP12 target 1 / Rapamycin target protein 1


Mass: 289257.969 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: MTOR, FRAP, FRAP1, FRAP2, RAFT1, RAPT1 / Production host: Homo sapiens (human)
References: UniProt: P42345, non-specific serine/threonine protein kinase
#2: Protein Peptidyl-prolyl cis-trans isomerase FKBP1A / PPIase FKBP1A / 12 kDa FK506-binding protein / 12 kDa FKBP / FKBP-12 / Calstabin-1 / FK506-binding ...PPIase FKBP1A / 12 kDa FK506-binding protein / 12 kDa FKBP / FKBP-12 / Calstabin-1 / FK506-binding protein 1A / FKBP-1A / Immunophilin FKBP12 / Rotamase


Mass: 11923.586 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: FKBP1A, FKBP1, FKBP12 / Production host: Escherichia coli (E. coli) / References: UniProt: P62942, peptidylprolyl isomerase
#3: Protein Target of rapamycin complex subunit LST8 / TORC subunit LST8 / G protein beta subunit-like / Protein GbetaL / Mammalian lethal with SEC13 ...TORC subunit LST8 / G protein beta subunit-like / Protein GbetaL / Mammalian lethal with SEC13 protein 8 / mLST8


Mass: 35910.090 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: MLST8, GBL, LST8 / Production host: Escherichia coli (E. coli) / References: UniProt: Q9BVC4
#4: Protein Regulatory-associated protein of mTOR / Raptor / p150 target of rapamycin (TOR)-scaffold protein


Mass: 149200.016 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: RPTOR, KIAA1303, RAPTOR / Production host: Homo sapiens (human) / References: UniProt: Q8N122

-
Non-polymers , 2 types, 2 molecules

#5: Chemical ChemComp-XZ9 / 1-[6-{[(3M)-4-amino-3-(2-amino-1,3-benzoxazol-5-yl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl]methyl}-3,4-dihydroisoquinolin-2(1H)-yl]-3-hydroxypropan-1-one


Mass: 484.510 Da / Num. of mol.: 1
Fragment: Entity 5 XZ9 and Entity 6 XYU are connected by an unmodeled PEG linker.
Source method: obtained synthetically / Formula: C25H24N8O3 / Feature type: SUBJECT OF INVESTIGATION
#6: Chemical ChemComp-XYU / (3S,5R,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,30R,34aS)-5,9,27-trihydroxy-3-{(2R)-1-[(1S,3R,4R)-4-hydroxy-3-methoxycyclohexyl]propan-2-yl}-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-5,6,9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-octadecahydro-3H-23,27-epoxypyrido[2,1-c][1,4]oxazacyclohentriacontine-1,11,28,29(4H,31H)-tetrone


Mass: 916.188 Da / Num. of mol.: 1
Fragment: Entity 5 XZ9 and Entity 6 XYU are connected by an unmodeled PEG linker.
Source method: obtained synthetically / Formula: C51H81NO13 / Feature type: SUBJECT OF INVESTIGATION

-
Details

Has ligand of interestY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: 2D ARRAY / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: RMC-5552-mTORC1-FKBP12 / Type: COMPLEX / Entity ID: #1-#4 / Source: RECOMBINANT
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Homo sapiens (human)
Buffer solutionpH: 8
SpecimenConc.: 5 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 200 kV / Illumination mode: SPOT SCAN
Electron lensMode: BRIGHT FIELD / Nominal defocus max: 3000 nm / Nominal defocus min: 1000 nm
Image recordingElectron dose: 30 e/Å2 / Film or detector model: GATAN K2 SUMMIT (4k x 4k)

-
Processing

Software
NameVersionClassification
phenix.real_space_refine1.20.1_4487refinement
PHENIX1.20.1_4487refinement
CTF correctionType: NONE
3D reconstructionResolution: 2.86 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 805027 / Symmetry type: POINT
RefinementCross valid method: NONE
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00529490
ELECTRON MICROSCOPYf_angle_d1.176940008
ELECTRON MICROSCOPYf_chiral_restr0.05364505
ELECTRON MICROSCOPYf_plane_restr0.00955110
ELECTRON MICROSCOPYf_dihedral_angle_d6.63623953

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbjlvh1.pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more