[English] 日本語
Yorodumi
- PDB-8dby: CryoEM structure of anaerobically prepared nitrogenase MoFe-prote... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8dby
TitleCryoEM structure of anaerobically prepared nitrogenase MoFe-protein on ultrathin carbon
Components(Nitrogenase molybdenum-iron protein ...) x 2
KeywordsMETAL BINDING PROTEIN / OXIDOREDUCTASE / Nitrogenase / metalloenzyme
Function / homology
Function and homology information


molybdenum-iron nitrogenase complex / nitrogenase / carbonyl sulfide nitrogenase activity / nitrogenase activity / nitrogen fixation / iron-sulfur cluster binding / ATP binding / metal ion binding
Similarity search - Function
Nitrogenase molybdenum-iron protein beta chain, N-terminal / Domain of unknown function (DUF3364) / Nitrogenase molybdenum-iron protein alpha chain / Nitrogenase molybdenum-iron protein beta chain / Nitrogenase component 1, alpha chain / Nitrogenase component 1, conserved site / Nitrogenases component 1 alpha and beta subunits signature 2. / Nitrogenases component 1 alpha and beta subunits signature 1. / Nitrogenase/oxidoreductase, component 1 / Nitrogenase component 1 type Oxidoreductase
Similarity search - Domain/homology
FE(8)-S(7) CLUSTER / : / 3-HYDROXY-3-CARBOXY-ADIPIC ACID / Chem-ICS / Nitrogenase molybdenum-iron protein alpha chain / Nitrogenase molybdenum-iron protein beta chain
Similarity search - Component
Biological speciesAzotobacter vinelandii (bacteria)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.26 Å
AuthorsWarmack, R.A. / Rees, D.C.
Funding support United States, 3items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)GM045162 United States
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)GM143836-01 United States
Howard Hughes Medical Institute (HHMI) United States
CitationJournal: Nat Protoc / Year: 2024
Title: Anaerobic cryoEM protocols for air-sensitive nitrogenase proteins.
Authors: Rebeccah A Warmack / Belinda B Wenke / Thomas Spatzal / Douglas C Rees /
Abstract: Single-particle cryo-electron microscopy (cryoEM) provides an attractive avenue for advancing our atomic resolution understanding of materials, molecules and living systems. However, the vast ...Single-particle cryo-electron microscopy (cryoEM) provides an attractive avenue for advancing our atomic resolution understanding of materials, molecules and living systems. However, the vast majority of published cryoEM methodologies focus on the characterization of aerobically purified samples. Air-sensitive enzymes and microorganisms represent important yet understudied systems in structural biology. We have recently demonstrated the success of an anaerobic single-particle cryoEM workflow applied to the air-sensitive nitrogenase enzymes. In this protocol, we detail the use of Schlenk lines and anaerobic chambers to prepare samples, including a protein tag for monitoring sample exposure to oxygen in air. We describe how to use a plunge freezing apparatus inside of a soft-sided vinyl chamber of the type we routinely use for anaerobic biochemistry and crystallography of oxygen-sensitive proteins. Manual control of the airlock allows for introduction of liquid cryogens into the tent. A custom vacuum port provides slow, continuous evacuation of the tent atmosphere to avoid accumulation of flammable vapors within the enclosed chamber. These methods allowed us to obtain high-resolution structures of both nitrogenase proteins using single-particle cryoEM. The procedures involved can be generally subdivided into a 4 d anaerobic sample generation procedure, and a 1 d anaerobic cryoEM sample preparation step, followed by conventional cryoEM imaging and processing steps. As nitrogen is a substrate for nitrogenase, the Schlenk lines and anaerobic chambers described in this procedure are operated under an argon atmosphere; however, the system and these procedures are compatible with other controlled gas environments.
History
DepositionJun 15, 2022Deposition site: RCSB / Processing site: RCSB
Revision 1.0Jun 21, 2023Provider: repository / Type: Initial release
Revision 1.1Apr 17, 2024Group: Data collection / Database references
Category: chem_comp_atom / chem_comp_bond ...chem_comp_atom / chem_comp_bond / citation / citation_author
Item: _citation.country / _citation.journal_abbrev ..._citation.country / _citation.journal_abbrev / _citation.journal_id_CSD / _citation.journal_id_ISSN / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Nitrogenase molybdenum-iron protein alpha chain
B: Nitrogenase molybdenum-iron protein beta chain
C: Nitrogenase molybdenum-iron protein alpha chain
D: Nitrogenase molybdenum-iron protein beta chain
hetero molecules


Theoretical massNumber of molelcules
Total (without water)233,23912
Polymers229,7984
Non-polymers3,4418
Water13,872770
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

-
Nitrogenase molybdenum-iron protein ... , 2 types, 4 molecules ACBD

#1: Protein Nitrogenase molybdenum-iron protein alpha chain / Dinitrogenase / Nitrogenase component I


Mass: 55363.043 Da / Num. of mol.: 2 / Source method: isolated from a natural source / Source: (natural) Azotobacter vinelandii (bacteria) / References: UniProt: P07328, nitrogenase
#2: Protein Nitrogenase molybdenum-iron protein beta chain / Dinitrogenase / Nitrogenase component I


Mass: 59535.879 Da / Num. of mol.: 2 / Source method: isolated from a natural source / Source: (natural) Azotobacter vinelandii (bacteria) / References: UniProt: P07329, nitrogenase

-
Non-polymers , 5 types, 778 molecules

#3: Chemical ChemComp-ICS / iron-sulfur-molybdenum cluster with interstitial carbon


Mass: 787.451 Da / Num. of mol.: 2 / Source method: isolated from a natural source / Formula: CFe7MoS9
#4: Chemical ChemComp-HCA / 3-HYDROXY-3-CARBOXY-ADIPIC ACID


Mass: 206.150 Da / Num. of mol.: 2 / Source method: obtained synthetically / Formula: C7H10O7
#5: Chemical ChemComp-FE / FE (III) ION / Iron


Mass: 55.845 Da / Num. of mol.: 2 / Source method: isolated from a natural source / Formula: Fe
#6: Chemical ChemComp-CLF / FE(8)-S(7) CLUSTER


Mass: 671.215 Da / Num. of mol.: 2 / Source method: obtained synthetically / Formula: Fe8S7
#7: Water ChemComp-HOH / water / Water


Mass: 18.015 Da / Num. of mol.: 770 / Source method: isolated from a natural source / Formula: H2O

-
Details

Has ligand of interestN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Heterotetrameric nitrogenase MoFe-protein / Type: COMPLEX / Entity ID: #1-#2 / Source: NATURAL
Source (natural)Organism: Azotobacter vinelandii (bacteria)
Buffer solutionpH: 7.8
SpecimenConc.: 1 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE-PROPANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: TFS KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: OTHER
Electron lensMode: BRIGHT FIELDBright-field microscopy / Nominal defocus max: -3000 nm / Nominal defocus min: -800 nm
Image recordingElectron dose: 60 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

SoftwareName: PHENIX / Version: 1.20.1_4487: / Classification: refinement
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 2.26 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 241057 / Symmetry type: POINT
RefinementCross valid method: NONE
Stereochemistry target values: GeoStd + Monomer Library + CDL v1.2
Displacement parametersBiso mean: 39.16 Å2
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00416450
ELECTRON MICROSCOPYf_angle_d0.5422340
ELECTRON MICROSCOPYf_dihedral_angle_d5.5652278
ELECTRON MICROSCOPYf_chiral_restr0.0452354
ELECTRON MICROSCOPYf_plane_restr0.0042856

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more