+Open data
-Basic information
Entry | Database: PDB / ID: 7tv3 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | LH2-LH3 antenna in parallel configuration embedded in a nanodisc | ||||||||||||||||||
Components |
| ||||||||||||||||||
Keywords | PHOTOSYNTHESIS / antenna / membrane protein / nanodisc / bacteriochlorophyll | ||||||||||||||||||
Function / homology | Function and homology information organelle inner membrane / plasma membrane light-harvesting complex / bacteriochlorophyll binding / photosynthesis, light reaction / electron transporter, transferring electrons within the cyclic electron transport pathway of photosynthesis activity / metal ion binding / plasma membrane Similarity search - Function | ||||||||||||||||||
Biological species | Magnetospirillum molischianum (magnetotactic) | ||||||||||||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 11.4 Å | ||||||||||||||||||
Authors | Toporik, H. / Harris, D. / Schlau-Cohen, G.S. / Mazor, Y. | ||||||||||||||||||
Funding support | United States, 5items
| ||||||||||||||||||
Citation | Journal: Proc Natl Acad Sci U S A / Year: 2023 Title: Elucidating interprotein energy transfer dynamics within the antenna network from purple bacteria. Authors: Dihao Wang / Olivia C Fiebig / Dvir Harris / Hila Toporik / Yi Ji / Chern Chuang / Muath Nairat / Ashley L Tong / John I Ogren / Stephanie M Hart / Jianshu Cao / James N Sturgis / Yuval ...Authors: Dihao Wang / Olivia C Fiebig / Dvir Harris / Hila Toporik / Yi Ji / Chern Chuang / Muath Nairat / Ashley L Tong / John I Ogren / Stephanie M Hart / Jianshu Cao / James N Sturgis / Yuval Mazor / Gabriela S Schlau-Cohen / Abstract: In photosynthesis, absorbed light energy transfers through a network of antenna proteins with near-unity quantum efficiency to reach the reaction center, which initiates the downstream biochemical ...In photosynthesis, absorbed light energy transfers through a network of antenna proteins with near-unity quantum efficiency to reach the reaction center, which initiates the downstream biochemical reactions. While the energy transfer dynamics within individual antenna proteins have been extensively studied over the past decades, the dynamics between the proteins are poorly understood due to the heterogeneous organization of the network. Previously reported timescales averaged over such heterogeneity, obscuring individual interprotein energy transfer steps. Here, we isolated and interrogated interprotein energy transfer by embedding two variants of the primary antenna protein from purple bacteria, light-harvesting complex 2 (LH2), together into a near-native membrane disc, known as a nanodisc. We integrated ultrafast transient absorption spectroscopy, quantum dynamics simulations, and cryogenic electron microscopy to determine interprotein energy transfer timescales. By varying the diameter of the nanodiscs, we replicated a range of distances between the proteins. The closest distance possible between neighboring LH2, which is the most common in native membranes, is 25 Å and resulted in a timescale of 5.7 ps. Larger distances of 28 to 31 Å resulted in timescales of 10 to 14 ps. Corresponding simulations showed that the fast energy transfer steps between closely spaced LH2 increase transport distances by ∼15%. Overall, our results introduce a framework for well-controlled studies of interprotein energy transfer dynamics and suggest that protein pairs serve as the primary pathway for the efficient transport of solar energy. | ||||||||||||||||||
History |
|
-Structure visualization
Structure viewer | Molecule: MolmilJmol/JSmol |
---|
-Downloads & links
-Download
PDBx/mmCIF format | 7tv3.cif.gz | 289 KB | Display | PDBx/mmCIF format |
---|---|---|---|---|
PDB format | pdb7tv3.ent.gz | 213.1 KB | Display | PDB format |
PDBx/mmJSON format | 7tv3.json.gz | Tree view | PDBx/mmJSON format | |
Others | Other downloads |
-Validation report
Summary document | 7tv3_validation.pdf.gz | 3.4 MB | Display | wwPDB validaton report |
---|---|---|---|---|
Full document | 7tv3_full_validation.pdf.gz | 3.5 MB | Display | |
Data in XML | 7tv3_validation.xml.gz | 50.8 KB | Display | |
Data in CIF | 7tv3_validation.cif.gz | 74.8 KB | Display | |
Arichive directory | https://data.pdbj.org/pub/pdb/validation_reports/tv/7tv3 ftp://data.pdbj.org/pub/pdb/validation_reports/tv/7tv3 | HTTPS FTP |
-Related structure data
Related structure data | 26138MC 7tuwC 8fb9C 8fbbC C: citing same article (ref.) M: map data used to model this data |
---|---|
Similar structure data | Similarity search - Function & homologyF&H Search |
-Links
-Assembly
Deposited unit |
|
---|---|
1 |
|
-Components
-Light-harvesting protein B-800/850 ... , 2 types, 16 molecules ACDGIKMOBEFHJLNP
#1: Protein | Mass: 6076.175 Da / Num. of mol.: 8 / Source method: isolated from a natural source Source: (natural) Magnetospirillum molischianum (magnetotactic) References: UniProt: P97253 #2: Protein/peptide | Mass: 4920.682 Da / Num. of mol.: 8 / Source method: isolated from a natural source Source: (natural) Magnetospirillum molischianum (magnetotactic) References: UniProt: P95673 |
---|
-Light-harvesting protein B800-820 ... , 2 types, 16 molecules QSUWYaceRTVXZbdf
#3: Protein | Mass: 6219.315 Da / Num. of mol.: 8 / Source method: isolated from a natural source Source: (natural) Magnetospirillum molischianum (magnetotactic) References: UniProt: Q7M119 #4: Protein/peptide | Mass: 5252.069 Da / Num. of mol.: 8 / Source method: isolated from a natural source Source: (natural) Magnetospirillum molischianum (magnetotactic) References: UniProt: Q7M158 |
---|
-Non-polymers , 2 types, 64 molecules
#5: Chemical | ChemComp-BCL / #6: Chemical | ChemComp-LYC / |
---|
-Details
Has ligand of interest | Y |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-Sample preparation
Component | Name: LH2 and LH3 antennae / Type: COMPLEX / Entity ID: #1-#4 / Source: NATURAL |
---|---|
Molecular weight | Experimental value: NO |
Source (natural) | Organism: Magnetospirillum molischianum (magnetotactic) |
Buffer solution | pH: 7.5 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Vitrification | Cryogen name: ETHANE |
-Electron microscopy imaging
Experimental equipment | Model: Talos Arctica / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TALOS ARCTICA |
Electron gun | Electron source: FIELD EMISSION GUN / Accelerating voltage: 200 kV / Illumination mode: FLOOD BEAM |
Electron lens | Mode: BRIGHT FIELD / Nominal defocus max: 3400 nm / Nominal defocus min: 1000 nm |
Image recording | Electron dose: 54.56 e/Å2 / Film or detector model: FEI FALCON III (4k x 4k) |
-Processing
EM software |
| ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF correction | Type: PHASE FLIPPING ONLY | ||||||||||||
3D reconstruction | Resolution: 11.4 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 22864 / Symmetry type: POINT | ||||||||||||
Atomic model building | Protocol: RIGID BODY FIT | ||||||||||||
Atomic model building | PDB-ID: 1LGH Accession code: 1LGH / Source name: PDB / Type: experimental model |