[English] 日本語
Yorodumi
- EMDB-41138: CryoEM structure of MFRV-VILP bound to IGF1Rzip -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-41138
TitleCryoEM structure of MFRV-VILP bound to IGF1Rzip
Map dataMap of MFRV-VILP bound to IGFRzip, reconstructed using 3D flexible refinement
Sample
  • Complex: 1:2 complex of MFRV-VILP bound to IGF1Rzip
    • Complex: MFRV-VILP
      • Protein or peptide: Insulin-like growth factor
    • Complex: IGF1Rzip
      • Protein or peptide: Insulin-like growth factor 1 receptor
  • Ligand: 2-acetamido-2-deoxy-beta-D-glucopyranose
KeywordsIGF1R / MFRV-VILP / VILP / SIGNALING PROTEIN
Function / homology
Function and homology information


cardiac atrium development / negative regulation of cholangiocyte apoptotic process / insulin-like growth factor receptor activity / positive regulation of steroid hormone biosynthetic process / protein kinase complex / Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) / protein transporter activity / IRS-related events triggered by IGF1R / insulin-like growth factor binding / negative regulation of muscle cell apoptotic process ...cardiac atrium development / negative regulation of cholangiocyte apoptotic process / insulin-like growth factor receptor activity / positive regulation of steroid hormone biosynthetic process / protein kinase complex / Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) / protein transporter activity / IRS-related events triggered by IGF1R / insulin-like growth factor binding / negative regulation of muscle cell apoptotic process / cellular response to progesterone stimulus / positive regulation of DNA metabolic process / cellular response to zinc ion starvation / cellular response to aldosterone / insulin receptor complex / cellular response to testosterone stimulus / negative regulation of hepatocyte apoptotic process / insulin-like growth factor I binding / insulin receptor activity / transcytosis / alphav-beta3 integrin-IGF-1-IGF1R complex / response to alkaloid / Respiratory syncytial virus (RSV) attachment and entry / positive regulation of protein-containing complex disassembly / cellular response to angiotensin / dendritic spine maintenance / cellular response to insulin-like growth factor stimulus / response to L-glutamate / insulin binding / negative regulation of MAPK cascade / establishment of cell polarity / positive regulation of axon regeneration / amyloid-beta clearance / positive regulation of osteoblast proliferation / positive regulation of cytokinesis / regulation of JNK cascade / insulin receptor substrate binding / estrous cycle / G-protein alpha-subunit binding / response to vitamin E / SHC-related events triggered by IGF1R / phosphatidylinositol 3-kinase binding / peptidyl-tyrosine autophosphorylation / cellular response to transforming growth factor beta stimulus / T-tubule / cerebellum development / cellular response to dexamethasone stimulus / axonogenesis / phosphatidylinositol 3-kinase/protein kinase B signal transduction / insulin-like growth factor receptor signaling pathway / caveola / cellular response to estradiol stimulus / hippocampus development / cellular response to glucose stimulus / positive regulation of smooth muscle cell proliferation / response to nicotine / insulin receptor binding / hormone activity / receptor protein-tyrosine kinase / cellular response to mechanical stimulus / cellular response to amyloid-beta / cellular senescence / insulin receptor signaling pathway / positive regulation of cold-induced thermogenesis / protein tyrosine kinase activity / response to ethanol / positive regulation of MAPK cascade / protein autophosphorylation / Extra-nuclear estrogen signaling / positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transduction / receptor complex / positive regulation of cell migration / immune response / axon / intracellular membrane-bounded organelle / neuronal cell body / positive regulation of cell population proliferation / protein-containing complex binding / negative regulation of apoptotic process / signal transduction / extracellular region / ATP binding / membrane / identical protein binding / plasma membrane
Similarity search - Function
Tyrosine-protein kinase, insulin-like receptor / Tyrosine-protein kinase, receptor class II, conserved site / Receptor tyrosine kinase class II signature. / Insulin-like / Insulin / insulin-like growth factor / relaxin family. / Insulin-like superfamily / Receptor L-domain / Furin-like cysteine-rich domain / Receptor L-domain superfamily / Furin-like cysteine rich region ...Tyrosine-protein kinase, insulin-like receptor / Tyrosine-protein kinase, receptor class II, conserved site / Receptor tyrosine kinase class II signature. / Insulin-like / Insulin / insulin-like growth factor / relaxin family. / Insulin-like superfamily / Receptor L-domain / Furin-like cysteine-rich domain / Receptor L-domain superfamily / Furin-like cysteine rich region / Receptor L domain / Furin-like repeat / Furin-like repeats / Growth factor receptor cysteine-rich domain superfamily / Fibronectin type III domain / Fibronectin type 3 domain / Fibronectin type-III domain profile. / Fibronectin type III / Fibronectin type III superfamily / Tyrosine-protein kinase, catalytic domain / Tyrosine kinase, catalytic domain / Tyrosine protein kinases specific active-site signature. / Tyrosine-protein kinase, active site / Protein tyrosine and serine/threonine kinase / Serine-threonine/tyrosine-protein kinase, catalytic domain / Protein kinase, ATP binding site / Protein kinases ATP-binding region signature. / Immunoglobulin-like fold / Protein kinase domain profile. / Protein kinase domain / Protein kinase-like domain superfamily
Similarity search - Domain/homology
Insulin-like growth factor / Insulin-like growth factor 1 receptor
Similarity search - Component
Biological speciesMandarin fish ranavirus / Homo sapiens (human)
Methodsingle particle reconstruction / cryo EM / Resolution: 3.05 Å
AuthorsKirk NS
Funding support Czech Republic, 2 items
OrganizationGrant numberCountry
Other governmentLX22NPO5104
Czech Academy of Sciences6138963 Czech Republic
CitationJournal: Mol Metab / Year: 2024
Title: A viral insulin-like peptide inhibits IGF-1 receptor phosphorylation and regulates IGF1R gene expression.
Authors: Martina Chrudinová / Nicholas S Kirk / Aurelien Chuard / Hari Venugopal / Fa Zhang / Marta Lubos / Vasily Gelfanov / Terezie Páníková / Lenka Žáková / Julianne Cutone / Matthew ...Authors: Martina Chrudinová / Nicholas S Kirk / Aurelien Chuard / Hari Venugopal / Fa Zhang / Marta Lubos / Vasily Gelfanov / Terezie Páníková / Lenka Žáková / Julianne Cutone / Matthew Mojares / Richard DiMarchi / Jiří Jiráček / Emrah Altindis /
Abstract: OBJECTIVE: The insulin/IGF superfamily is conserved across vertebrates and invertebrates. Our team has identified five viruses containing genes encoding viral insulin/IGF-1 like peptides (VILPs) ...OBJECTIVE: The insulin/IGF superfamily is conserved across vertebrates and invertebrates. Our team has identified five viruses containing genes encoding viral insulin/IGF-1 like peptides (VILPs) closely resembling human insulin and IGF-1. This study aims to characterize the impact of Mandarin fish ranavirus (MFRV) and Lymphocystis disease virus-Sa (LCDV-Sa) VILPs on the insulin/IGF system for the first time.
METHODS: We chemically synthesized single chain (sc, IGF-1 like) and double chain (dc, insulin like) forms of MFRV and LCDV-Sa VILPs. Using cell lines overexpressing either human insulin receptor ...METHODS: We chemically synthesized single chain (sc, IGF-1 like) and double chain (dc, insulin like) forms of MFRV and LCDV-Sa VILPs. Using cell lines overexpressing either human insulin receptor isoform A (IR-A), isoform B (IR-B) or IGF-1 receptor (IGF1R), and AML12 murine hepatocytes, we characterized receptor binding, insulin/IGF signaling. We further characterized the VILPs' effects of proliferation and IGF1R and IR gene expression, and compared them to native ligands. Additionally, we performed insulin tolerance test in CB57BL/6 J mice to examine in vivo effects of VILPs on blood glucose levels. Finally, we employed cryo-electron microscopy (cryoEM) to analyze the structure of scMFRV-VILP in complex with the IGF1R ectodomain.
RESULTS: VILPs can bind to human IR and IGF1R, stimulate receptor autophosphorylation and downstream signaling pathways. Notably, scMFRV-VILP exhibited a particularly strong affinity for IGF1R, with ...RESULTS: VILPs can bind to human IR and IGF1R, stimulate receptor autophosphorylation and downstream signaling pathways. Notably, scMFRV-VILP exhibited a particularly strong affinity for IGF1R, with a mere 10-fold decrease compared to human IGF-1. At high concentrations, scMFRV-VILP selectively reduced IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation (Ras/MAPK pathway), while leaving Akt phosphorylation (PI3K/Akt pathway) unaffected, indicating a potential biased inhibitory function. Prolonged exposure to MFRV-VILP led to a significant decrease in IGF1R gene expression in IGF1R overexpressing cells and AML12 hepatocytes. Furthermore, insulin tolerance test revealed scMFRV-VILP's sustained glucose-lowering effect compared to insulin and IGF-1. Finally, cryo-EM analysis revealed that scMFRV-VILP engages with IGF1R in a manner closely resembling IGF-1 binding, resulting in a highly analogous structure.
CONCLUSIONS: This study introduces MFRV and LCDV-Sa VILPs as novel members of the insulin/IGF superfamily. Particularly, scMFRV-VILP exhibits a biased inhibitory effect on IGF1R signaling at high ...CONCLUSIONS: This study introduces MFRV and LCDV-Sa VILPs as novel members of the insulin/IGF superfamily. Particularly, scMFRV-VILP exhibits a biased inhibitory effect on IGF1R signaling at high concentrations, selectively inhibiting IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation, without affecting Akt phosphorylation. In addition, MFRV-VILP specifically regulates IGF-1R gene expression and IGF1R protein levels without affecting IR. CryoEM analysis confirms that scMFRV-VILP' binding to IGF1R is mirroring the interaction pattern observed with IGF-1. These findings offer valuable insights into IGF1R action and inhibition, suggesting potential applications in development of IGF1R specific inhibitors and advancing long-lasting insulins.
History
DepositionJun 27, 2023-
Header (metadata) releaseJan 17, 2024-
Map releaseJan 17, 2024-
UpdateJan 31, 2024-
Current statusJan 31, 2024Processing site: RCSB / Status: Released

-
Structure visualization

Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_41138.map.gz / Format: CCP4 / Size: 27 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
AnnotationMap of MFRV-VILP bound to IGFRzip, reconstructed using 3D flexible refinement
Voxel sizeX=Y=Z: 1.06 Å
Density
Contour LevelBy AUTHOR: 0.017
Minimum - Maximum-0.057009883 - 0.1042925
Average (Standard dev.)0.00044596003 (±0.0035273104)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions192192192
Spacing192192192
CellA=B=C: 203.51999 Å
α=β=γ: 90.0 °

-
Supplemental data

-
Mask #1

Fileemd_41138_msk_1.map
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Additional map: DeepEMHancer-sharpened map of MFRV-VILP bound to IGFRzip, reconstructed...

Fileemd_41138_additional_1.map
AnnotationDeepEMHancer-sharpened map of MFRV-VILP bound to IGFRzip, reconstructed using 3D flexible refinement
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Half map: Half-map B of MFRV-VILP bound to IGFRzip, reconstructed...

Fileemd_41138_half_map_1.map
AnnotationHalf-map B of MFRV-VILP bound to IGFRzip, reconstructed using 3D flexible refinement
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Half map: Half-map A of MFRV-VILP bound to IGFRzip, reconstructed...

Fileemd_41138_half_map_2.map
AnnotationHalf-map A of MFRV-VILP bound to IGFRzip, reconstructed using 3D flexible refinement
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Sample components

-
Entire : 1:2 complex of MFRV-VILP bound to IGF1Rzip

EntireName: 1:2 complex of MFRV-VILP bound to IGF1Rzip
Components
  • Complex: 1:2 complex of MFRV-VILP bound to IGF1Rzip
    • Complex: MFRV-VILP
      • Protein or peptide: Insulin-like growth factor
    • Complex: IGF1Rzip
      • Protein or peptide: Insulin-like growth factor 1 receptor
  • Ligand: 2-acetamido-2-deoxy-beta-D-glucopyranose

-
Supramolecule #1: 1:2 complex of MFRV-VILP bound to IGF1Rzip

SupramoleculeName: 1:2 complex of MFRV-VILP bound to IGF1Rzip / type: complex / ID: 1 / Parent: 0 / Macromolecule list: #1-#2

-
Supramolecule #2: MFRV-VILP

SupramoleculeName: MFRV-VILP / type: complex / ID: 2 / Parent: 1 / Macromolecule list: #2
Source (natural)Organism: Mandarin fish ranavirus / Synthetically produced: Yes

-
Supramolecule #3: IGF1Rzip

SupramoleculeName: IGF1Rzip / type: complex / ID: 3 / Parent: 1 / Macromolecule list: #1
Details: IGF1R ectodomain with C-terminal leucine zipper domain
Source (natural)Organism: Homo sapiens (human)

-
Macromolecule #1: Insulin-like growth factor 1 receptor

MacromoleculeName: Insulin-like growth factor 1 receptor / type: protein_or_peptide / ID: 1 / Number of copies: 2 / Enantiomer: LEVO / EC number: receptor protein-tyrosine kinase
Source (natural)Organism: Homo sapiens (human)
Molecular weightTheoretical: 108.937242 KDa
Recombinant expressionOrganism: Cricetulus griseus (Chinese hamster)
SequenceString: EICGPGIDIR NDYQQLKRLE NCTVIEGYLH ILLISKAEDY RSYRFPKLTV ITEYLLLFRV AGLESLGDLF PNLTVIRGWK LFYNYALVI FEMTNLKDIG LYNLRNITRG AIRIEKNADL CYLSTVDWSL ILDAVSNNYI VGNKPPKECG DLCPGTMEEK P MCEKTTIN ...String:
EICGPGIDIR NDYQQLKRLE NCTVIEGYLH ILLISKAEDY RSYRFPKLTV ITEYLLLFRV AGLESLGDLF PNLTVIRGWK LFYNYALVI FEMTNLKDIG LYNLRNITRG AIRIEKNADL CYLSTVDWSL ILDAVSNNYI VGNKPPKECG DLCPGTMEEK P MCEKTTIN NEYNYRCWTT NRCQKMCPST CGKRACTENN ECCHPECLGS CSAPDNDTAC VACRHYYYAG VCVPACPPNT YR FEGWRCV DRDFCANILS AESSDSEGFV IHDGECMQEC PSGFIRNGSQ SMYCIPCEGP CPKVCEEEKK TKTIDSVTSA QML QGCTIF KGNLLINIRR GNNIASELEN FMGLIEVVTG YVKIRHSHAL VSLSFLKNLR LILGEEQLEG NYSFYVLDNQ NLQQ LWDWD HRNLTIKAGK MYFAFNPKLC VSEIYRMEEV TGTKGRQSKG DINTRNNGER ASCESDVLHF TSTTTSKNRI IITWH RYRP PDYRDLISFT VYYKEAPFKN VTEYDGQDAC GSNSWNMVDV DLPPNKDVEP GILLHGLKPW TQYAVYVKAV TLTMVE NDH IRGAKSEILY IRTNASVPSI PLDVLSASNS SSQLIVKWNP PSLPNGNLSY YIVRWQRQPQ DGYLYRHNYC SKDKIPI RK YADGTIDIEE VTENPKTEVC GGEKGPCCAC PKTEAEKQAE KEEAEYRKVF ENFLHNSIFV PRPERKRRDV MQVANTTM S SRSRNTTAAD TYNITDPEEL ETEYPFFESR VDNKERTVIS NLRPFTLYRI DIHSCNHEAE KLGCSASNFV FARTMPAEG ADDIPGPVTW EPRPENSIFL KWPEPENPNG LILMYEIKYG SQVEDQRECV SRQEYRKYGG AKLNRLNPGN YTARIQATSL SGNGSWTDP VFFYVQAKTG YENFIHRMKQ LEDKVEELLS KNYHLENEVA RLKKLVGERS SSEQKLISEE DLN

UniProtKB: Insulin-like growth factor 1 receptor

-
Macromolecule #2: Insulin-like growth factor

MacromoleculeName: Insulin-like growth factor / type: protein_or_peptide / ID: 2 / Number of copies: 1 / Enantiomer: LEVO
Source (natural)Organism: Mandarin fish ranavirus
Molecular weightTheoretical: 6.799011 KDa
SequenceString:
VLTDKLCGKD LVDALLLVCG EKGVYSPKMG YARAKTVKGN GIADVCCTSA NGCDLNFLEK FCKT

UniProtKB: Insulin-like growth factor

-
Macromolecule #5: 2-acetamido-2-deoxy-beta-D-glucopyranose

MacromoleculeName: 2-acetamido-2-deoxy-beta-D-glucopyranose / type: ligand / ID: 5 / Number of copies: 11 / Formula: NAG
Molecular weightTheoretical: 221.208 Da
Chemical component information

ChemComp-NAG:
2-acetamido-2-deoxy-beta-D-glucopyranose

-
Experimental details

-
Structure determination

Methodcryo EM
Processingsingle particle reconstruction
Aggregation stateparticle

-
Sample preparation

Concentration1.2 mg/mL
BufferpH: 8
GridModel: Quantifoil R1.2/1.3 / Material: COPPER / Mesh: 300 / Support film - Material: CARBON / Support film - topology: HOLEY / Pretreatment - Type: GLOW DISCHARGE / Pretreatment - Time: 30 sec. / Pretreatment - Atmosphere: AIR / Pretreatment - Pressure: 0.00039000000000000005 kPa
VitrificationCryogen name: ETHANE / Chamber humidity: 100 % / Chamber temperature: 277 K / Instrument: FEI VITROBOT MARK IV

-
Electron microscopy

MicroscopeFEI TITAN KRIOS
Image recordingFilm or detector model: GATAN K3 (6k x 4k) / Number grids imaged: 1 / Number real images: 7833 / Average exposure time: 5.36 sec. / Average electron dose: 60.0 e/Å2
Electron beamAcceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
Electron opticsC2 aperture diameter: 50.0 µm / Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Cs: 2.7 mm / Nominal defocus max: 17.0 µm / Nominal defocus min: 4.0 µm / Nominal magnification: 130000
Sample stageSpecimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER / Cooling holder cryogen: NITROGEN
Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company

+
Image processing

Particle selectionNumber selected: 8500000
Startup modelType of model: INSILICO MODEL
Final reconstructionNumber classes used: 1 / Resolution.type: BY AUTHOR / Resolution: 3.05 Å / Resolution method: FSC 0.143 CUT-OFF / Software - Name: cryoSPARC / Number images used: 201000
Initial angle assignmentType: MAXIMUM LIKELIHOOD
Final angle assignmentType: MAXIMUM LIKELIHOOD
FSC plot (resolution estimation)

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbjlvh1.pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more