Journal: J Struct Biol X / Year: 2025 Title: Hemoglobin receptor redundancy in : molecular flexibility as a determinant of divergent hemophore activity. Authors: Valeria Buoli Comani / Omar De Bei / Francesca Pancrazi / Marcos Gragera / Giulia Paris / Marialaura Marchetti / Barbara Campanini / Luca Ronda / Ben F Luisi / Serena Faggiano / Anna Rita ...Authors: Valeria Buoli Comani / Omar De Bei / Francesca Pancrazi / Marcos Gragera / Giulia Paris / Marialaura Marchetti / Barbara Campanini / Luca Ronda / Ben F Luisi / Serena Faggiano / Anna Rita Bizzarri / Stefano Bettati / Abstract: To overcome iron limitation in the host, exploits sophisticated mechanisms to acquire this essential nutrient, particularly from hemoglobin (Hb). The bacterial hemophores IsdH and IsdB play key ...To overcome iron limitation in the host, exploits sophisticated mechanisms to acquire this essential nutrient, particularly from hemoglobin (Hb). The bacterial hemophores IsdH and IsdB play key roles in binding Hb and extracting heme, but the structural and mechanistic differences underlying their individual contributions remain poorly defined. In this study, we dissected the molecular mechanisms by which IsdH engages Hb and mediates heme extraction, using cryo-electron microscopy, biochemical assays, and single-molecule force spectroscopy. Our structural analyses revealed pronounced conformational heterogeneity within IsdH:Hb complexes, highlighting marked flexibility in the heme-binding domain of IsdH, likely underlying its distinct functional behavior. This plasticity contrasts with the more rigid architecture of IsdB. The flexibility observed in IsdH correlates with our biochemical and biophysical findings, supporting its functional relevance. Unlike IsdB, IsdH does not display selectivity for α- or β-Hb chains and shows reduced involvement of the heme-binding domain in Hb recognition. It also follows a distinct kinetic mechanism for heme capture, which begins upon binding but proceeds more slowly than in IsdB. Finally, IsdH does not exhibit the catch bond-like behavior characteristic of IsdB, suggesting it may act in different physiological niches or conditions. Collectively, these findings highlight a distinct mode of Hb engagement by IsdH, shaped by its dynamic and flexible architecture, and provide mechanistic insight into the diversity of iron acquisition strategies employed by .
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi