[English] 日本語
Yorodumi
- PDB-8dc7: Crystal structure of p53 Y220C covalently bound to indole KG10 -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8dc7
TitleCrystal structure of p53 Y220C covalently bound to indole KG10
ComponentsCellular tumor antigen p53
KeywordsCELL CYCLE / TP53 / tumor suppressor
Function / homology
Function and homology information


Loss of function of TP53 in cancer due to loss of tetramerization ability / Regulation of TP53 Expression / signal transduction by p53 class mediator / negative regulation of G1 to G0 transition / negative regulation of glucose catabolic process to lactate via pyruvate / Transcriptional activation of cell cycle inhibitor p21 / regulation of intrinsic apoptotic signaling pathway by p53 class mediator / Activation of NOXA and translocation to mitochondria / negative regulation of pentose-phosphate shunt / ATP-dependent DNA/DNA annealing activity ...Loss of function of TP53 in cancer due to loss of tetramerization ability / Regulation of TP53 Expression / signal transduction by p53 class mediator / negative regulation of G1 to G0 transition / negative regulation of glucose catabolic process to lactate via pyruvate / Transcriptional activation of cell cycle inhibitor p21 / regulation of intrinsic apoptotic signaling pathway by p53 class mediator / Activation of NOXA and translocation to mitochondria / negative regulation of pentose-phosphate shunt / ATP-dependent DNA/DNA annealing activity / negative regulation of helicase activity / regulation of cell cycle G2/M phase transition / intrinsic apoptotic signaling pathway in response to hypoxia / regulation of fibroblast apoptotic process / oxidative stress-induced premature senescence / oligodendrocyte apoptotic process / negative regulation of miRNA processing / positive regulation of thymocyte apoptotic process / regulation of tissue remodeling / glucose catabolic process to lactate via pyruvate / positive regulation of mitochondrial membrane permeability / negative regulation of mitophagy / positive regulation of programmed necrotic cell death / mRNA transcription / bone marrow development / circadian behavior / histone deacetylase regulator activity / germ cell nucleus / T cell lineage commitment / regulation of mitochondrial membrane permeability involved in apoptotic process / RUNX3 regulates CDKN1A transcription / regulation of DNA damage response, signal transduction by p53 class mediator / TP53 regulates transcription of additional cell cycle genes whose exact role in the p53 pathway remain uncertain / TP53 Regulates Transcription of Death Receptors and Ligands / Activation of PUMA and translocation to mitochondria / DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediator / B cell lineage commitment / thymocyte apoptotic process / negative regulation of glial cell proliferation / negative regulation of neuroblast proliferation / Regulation of TP53 Activity through Association with Co-factors / mitochondrial DNA repair / Formation of Senescence-Associated Heterochromatin Foci (SAHF) / TP53 Regulates Transcription of Caspase Activators and Caspases / ER overload response / positive regulation of release of cytochrome c from mitochondria / negative regulation of DNA replication / positive regulation of cardiac muscle cell apoptotic process / TP53 regulates transcription of several additional cell death genes whose specific roles in p53-dependent apoptosis remain uncertain / entrainment of circadian clock by photoperiod / cardiac septum morphogenesis / PI5P Regulates TP53 Acetylation / Association of TriC/CCT with target proteins during biosynthesis / necroptotic process / Zygotic genome activation (ZGA) / positive regulation of execution phase of apoptosis / TP53 Regulates Transcription of Genes Involved in Cytochrome C Release / TFIID-class transcription factor complex binding / rRNA transcription / negative regulation of telomere maintenance via telomerase / SUMOylation of transcription factors / intrinsic apoptotic signaling pathway by p53 class mediator / general transcription initiation factor binding / intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress / Transcriptional Regulation by VENTX / DNA damage response, signal transduction by p53 class mediator / response to X-ray / replicative senescence / Pyroptosis / mitophagy / cellular response to UV-C / positive regulation of RNA polymerase II transcription preinitiation complex assembly / neuroblast proliferation / hematopoietic stem cell differentiation / negative regulation of reactive oxygen species metabolic process / intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator / somitogenesis / embryonic organ development / chromosome organization / T cell proliferation involved in immune response / type II interferon-mediated signaling pathway / glial cell proliferation / viral process / cis-regulatory region sequence-specific DNA binding / TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest / hematopoietic progenitor cell differentiation / cellular response to actinomycin D / positive regulation of intrinsic apoptotic signaling pathway / cellular response to glucose starvation / core promoter sequence-specific DNA binding / negative regulation of stem cell proliferation / mitotic G1 DNA damage checkpoint signaling / negative regulation of fibroblast proliferation / gastrulation / MDM2/MDM4 family protein binding / tumor necrosis factor-mediated signaling pathway / response to salt stress / cardiac muscle cell apoptotic process / 14-3-3 protein binding / Regulation of TP53 Activity through Acetylation
Similarity search - Function
Cellular tumor antigen p53, transactivation domain 2 / Transactivation domain 2 / p53 transactivation domain / P53 transactivation motif / p53 family signature. / p53, tetramerisation domain / P53 tetramerisation motif / p53, DNA-binding domain / P53 DNA-binding domain / p53 tumour suppressor family ...Cellular tumor antigen p53, transactivation domain 2 / Transactivation domain 2 / p53 transactivation domain / P53 transactivation motif / p53 family signature. / p53, tetramerisation domain / P53 tetramerisation motif / p53, DNA-binding domain / P53 DNA-binding domain / p53 tumour suppressor family / p53-like tetramerisation domain superfamily / p53/RUNT-type transcription factor, DNA-binding domain superfamily / p53-like transcription factor, DNA-binding
Similarity search - Domain/homology
Chem-R4R / Cellular tumor antigen p53
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodX-RAY DIFFRACTION / SYNCHROTRON / MOLECULAR REPLACEMENT / Resolution: 1.98700696061 Å
AuthorsGuiley, K.Z. / Shokat, K.M.
Funding support United States, 1items
OrganizationGrant numberCountry
Howard Hughes Medical Institute (HHMI)DRG: 2399-20 United States
CitationJournal: Cancer Discov / Year: 2023
Title: A Small Molecule Reacts with the p53 Somatic Mutant Y220C to Rescue Wild-type Thermal Stability.
Authors: Guiley, K.Z. / Shokat, K.M.
History
DepositionJun 15, 2022Deposition site: RCSB / Processing site: RCSB
Revision 1.0Oct 12, 2022Provider: repository / Type: Initial release
Revision 1.1Jan 18, 2023Group: Database references / Category: citation
Item: _citation.journal_volume / _citation.page_first ..._citation.journal_volume / _citation.page_first / _citation.page_last / _citation.title / _citation.year
Revision 1.2Oct 25, 2023Group: Data collection / Refinement description
Category: chem_comp_atom / chem_comp_bond / pdbx_initial_refinement_model

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Cellular tumor antigen p53
hetero molecules


Theoretical massNumber of molelcules
Total (without water)25,5468
Polymers24,7541
Non-polymers7927
Water3,045169
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: gel filtration
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1
Unit cell
Length a, b, c (Å)68.660, 85.920, 84.040
Angle α, β, γ (deg.)90.000, 90.000, 90.000
Int Tables number20
Space group name H-MC2221
Space group name HallC2c2
Symmetry operation#1: x,y,z
#2: x,-y,-z
#3: -x,y,-z+1/2
#4: -x,-y,z+1/2
#5: x+1/2,y+1/2,z
#6: x+1/2,-y+1/2,-z
#7: -x+1/2,y+1/2,-z+1/2
#8: -x+1/2,-y+1/2,z+1/2
Components on special symmetry positions
IDModelComponents
11A-406-

MG

21A-575-

HOH

31A-667-

HOH

-
Components

-
Protein , 1 types, 1 molecules A

#1: Protein Cellular tumor antigen p53 / Antigen NY-CO-13 / Phosphoprotein p53 / Tumor suppressor p53


Mass: 24753.869 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: TP53, P53 / Production host: Escherichia coli (E. coli) / References: UniProt: P04637

-
Non-polymers , 5 types, 176 molecules

#2: Chemical ChemComp-SO4 / SULFATE ION


Mass: 96.063 Da / Num. of mol.: 3 / Source method: obtained synthetically / Formula: SO4
#3: Chemical ChemComp-ZN / ZINC ION


Mass: 65.409 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: Zn / Feature type: SUBJECT OF INVESTIGATION
#4: Chemical ChemComp-MG / MAGNESIUM ION


Mass: 24.305 Da / Num. of mol.: 2 / Source method: obtained synthetically / Formula: Mg
#5: Chemical ChemComp-R4R / 4-[4-(4-methylpiperazin-1-yl)phenyl]-1-(2-methylprop-2-enoyl)-1H-indole-3-carbaldehyde, bound form


Mass: 389.490 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: C24H27N3O2 / Feature type: SUBJECT OF INVESTIGATION
#6: Water ChemComp-HOH / water


Mass: 18.015 Da / Num. of mol.: 169 / Source method: isolated from a natural source / Formula: H2O

-
Details

Has ligand of interestY

-
Experimental details

-
Experiment

ExperimentMethod: X-RAY DIFFRACTION / Number of used crystals: 1

-
Sample preparation

CrystalDensity Matthews: 2.5 Å3/Da / Density % sol: 50.87 %
Crystal growTemperature: 298 K / Method: vapor diffusion, hanging drop / pH: 7 / Details: 100 mM HEPES, 2.2M MgSO4

-
Data collection

DiffractionMean temperature: 80 K / Serial crystal experiment: N
Diffraction sourceSource: SYNCHROTRON / Site: ALS / Beamline: 8.2.1 / Wavelength: 1 Å
DetectorType: ADSC QUANTUM 315r / Detector: CCD / Date: Dec 16, 2021
RadiationProtocol: SINGLE WAVELENGTH / Monochromatic (M) / Laue (L): M / Scattering type: x-ray
Radiation wavelengthWavelength: 1 Å / Relative weight: 1
ReflectionResolution: 1.98→84.02 Å / Num. obs: 17477 / % possible obs: 100 % / Redundancy: 3.5 % / Biso Wilson estimate: 15.8171349533 Å2 / CC1/2: 0.998 / Net I/σ(I): 15.2
Reflection shellResolution: 1.99→1.99 Å / Num. unique obs: 1722 / CC1/2: 0.984

-
Processing

Software
NameVersionClassification
Blu-Icedata collection
iMOSFLMdata reduction
Aimlessdata scaling
PHASERphasing
PHENIX1.20.1refinement
RefinementMethod to determine structure: MOLECULAR REPLACEMENT
Starting model: 2J1X
Resolution: 1.98700696061→38.251961468 Å / SU ML: 0.167857413503 / Cross valid method: FREE R-VALUE / σ(F): 1.39012871145 / Phase error: 17.8915610601
Stereochemistry target values: GeoStd + Monomer Library + CDL v1.2
RfactorNum. reflection% reflection
Rfree0.192961932618 868 4.96823307195 %
Rwork0.160215505237 16603 -
obs0.161901558302 17471 99.9370781375 %
Solvent computationShrinkage radii: 0.9 Å / VDW probe radii: 1.11 Å / Solvent model: FLAT BULK SOLVENT MODEL
Displacement parametersBiso mean: 21.3670121476 Å2
Refinement stepCycle: LAST / Resolution: 1.98700696061→38.251961468 Å
ProteinNucleic acidLigandSolventTotal
Num. atoms1551 0 47 169 1767
Refine LS restraints
Refine-IDTypeDev idealNumber
X-RAY DIFFRACTIONf_bond_d0.007265484627331689
X-RAY DIFFRACTIONf_angle_d1.02736317712307
X-RAY DIFFRACTIONf_chiral_restr0.054878759781246
X-RAY DIFFRACTIONf_plane_restr0.00563906981813300
X-RAY DIFFRACTIONf_dihedral_angle_d17.40535407181034
LS refinement shell
Resolution (Å)Rfactor RfreeNum. reflection RfreeRfactor RworkNum. reflection RworkRefine-ID% reflection obs (%)
1.98700696061-2.11150.2103493223221420.1721650800522719X-RAY DIFFRACTION99.7559274756
2.1115-2.27450.2159038738761270.1543164816392744X-RAY DIFFRACTION99.9651810585
2.2745-2.50340.2078140089111470.1601708717352748X-RAY DIFFRACTION100
2.5034-2.86550.2051968453051540.1719416563892734X-RAY DIFFRACTION100
2.8655-3.60980.1835781449431390.1589728717442784X-RAY DIFFRACTION100

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more