[English] 日本語
Yorodumi
- PDB-7vbb: Structure of the post state human RNA Polymerase I Elongation Complex -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7vbb
TitleStructure of the post state human RNA Polymerase I Elongation Complex
Components
  • (DNA-directed RNA polymerase I subunit ...) x 6
  • (DNA-directed RNA polymerases I and III subunit ...) x 2
  • (DNA-directed RNA polymerases I, II, and III subunit ...) x 5
  • DNA (25-MER)
  • DNA (5'-D(*CP*TP*GP*TP*CP*CP*TP*CP*TP*GP*GP*CP*GP*A)-3')
  • RNA (5'-R(P*UP*GP*CP*UP*GP*AP*CP*U)-3')
KeywordsTRANSCRIPTION/DNA/RNA / RNA Polymerase I / transcription / post state / TRANSCRIPTION-DNA-RNA complex
Function / homology
Function and homology information


RNA polymerase I transcription regulator complex / negative regulation of protein localization to nucleolus / nucleologenesis / neural crest formation / RNA Polymerase III Chain Elongation / RNA Polymerase III Transcription Termination / DNA/RNA hybrid binding / regulation of transcription by RNA polymerase I / RPAP3/R2TP/prefoldin-like complex / RNA polymerase I general transcription initiation factor binding ...RNA polymerase I transcription regulator complex / negative regulation of protein localization to nucleolus / nucleologenesis / neural crest formation / RNA Polymerase III Chain Elongation / RNA Polymerase III Transcription Termination / DNA/RNA hybrid binding / regulation of transcription by RNA polymerase I / RPAP3/R2TP/prefoldin-like complex / RNA polymerase I general transcription initiation factor binding / Cytosolic sensors of pathogen-associated DNA / RNA Polymerase III Transcription Initiation From Type 1 Promoter / RNA Polymerase III Transcription Initiation From Type 2 Promoter / RNA Polymerase III Transcription Initiation From Type 3 Promoter / RNA Polymerase III Abortive And Retractive Initiation / RNA polymerase I preinitiation complex assembly / Abortive elongation of HIV-1 transcript in the absence of Tat / nucleobase-containing compound metabolic process / RNA Polymerase I Transcription Termination / FGFR2 alternative splicing / MicroRNA (miRNA) biogenesis / Signaling by FGFR2 IIIa TM / Viral Messenger RNA Synthesis / RNA Pol II CTD phosphorylation and interaction with CE during HIV infection / RNA Pol II CTD phosphorylation and interaction with CE / Formation of the Early Elongation Complex / Formation of the HIV-1 Early Elongation Complex / mRNA Capping / PIWI-interacting RNA (piRNA) biogenesis / HIV Transcription Initiation / RNA Polymerase II HIV Promoter Escape / Transcription of the HIV genome / RNA Polymerase II Promoter Escape / RNA Polymerase II Transcription Pre-Initiation And Promoter Opening / RNA Polymerase II Transcription Initiation / RNA Polymerase II Transcription Initiation And Promoter Clearance / RNA polymerase III activity / termination of RNA polymerase I transcription / nucleolar large rRNA transcription by RNA polymerase I / mRNA Splicing - Minor Pathway / RNA Polymerase I Transcription Initiation / Pausing and recovery of Tat-mediated HIV elongation / Tat-mediated HIV elongation arrest and recovery / transcription by RNA polymerase I / transcription initiation at RNA polymerase I promoter / rRNA transcription / HIV elongation arrest and recovery / Pausing and recovery of HIV elongation / Processing of Capped Intron-Containing Pre-mRNA / transcription by RNA polymerase III / RNA polymerase II transcribes snRNA genes / Tat-mediated elongation of the HIV-1 transcript / transcription elongation by RNA polymerase I / Formation of HIV-1 elongation complex containing HIV-1 Tat / tRNA transcription by RNA polymerase III / RNA polymerase I activity / RNA polymerase I complex / RNA polymerase III complex / Formation of HIV elongation complex in the absence of HIV Tat / RNA polymerase II, core complex / RNA Polymerase II Transcription Elongation / Formation of RNA Pol II elongation complex / cell surface receptor protein tyrosine kinase signaling pathway / RNA Polymerase II Pre-transcription Events / Inhibition of DNA recombination at telomere / embryo implantation / mRNA Splicing - Major Pathway / protein-DNA complex / cellular response to leukemia inhibitory factor / DNA-templated transcription initiation / TP53 Regulates Transcription of DNA Repair Genes / RNA Polymerase I Promoter Escape / Transcriptional regulation by small RNAs / NoRC negatively regulates rRNA expression / B-WICH complex positively regulates rRNA expression / Transcription-Coupled Nucleotide Excision Repair (TC-NER) / Formation of TC-NER Pre-Incision Complex / ribonucleoside binding / fibrillar center / DNA-directed 5'-3' RNA polymerase activity / Activation of anterior HOX genes in hindbrain development during early embryogenesis / DNA-directed RNA polymerase / Dual incision in TC-NER / Gap-filling DNA repair synthesis and ligation in TC-NER / single-stranded DNA binding / chromosome / Estrogen-dependent gene expression / transcription by RNA polymerase II / nucleic acid binding / protein dimerization activity / protein stabilization / chromatin binding / nucleolus / magnesium ion binding / mitochondrion / DNA binding / RNA binding / zinc ion binding / nucleoplasm / nucleus
Similarity search - Function
DNA-directed RNA polymerase I, subunit RPA34.5 / DNA-directed RNA polymerase I subunit RPA34.5 / RNA polymerase I associated factor, A49-like / A49-like RNA polymerase I associated factor / Rpa43, N-terminal ribonucleoprotein (RNP) domain / RPA43, OB domain / RPA43 OB domain in RNA Pol I / DNA-directed RNA polymerase I subunit RPA2, domain 4 / DNA-directed RNA pol I, largest subunit / Pol I subunit A12, C-terminal zinc ribbon ...DNA-directed RNA polymerase I, subunit RPA34.5 / DNA-directed RNA polymerase I subunit RPA34.5 / RNA polymerase I associated factor, A49-like / A49-like RNA polymerase I associated factor / Rpa43, N-terminal ribonucleoprotein (RNP) domain / RPA43, OB domain / RPA43 OB domain in RNA Pol I / DNA-directed RNA polymerase I subunit RPA2, domain 4 / DNA-directed RNA pol I, largest subunit / Pol I subunit A12, C-terminal zinc ribbon / : / RNA polymerase I, Rpa2 specific domain / DNA-directed RNA polymerases I and III subunit AC19 / DNA-directed RNA polymerases I and III subunit AC40 / Zinc finger TFIIS-type signature. / RNA polymerase Rpb7-like , N-terminal / RNA polymerase Rpb7-like, N-terminal domain superfamily / RNA polymerase subunit Rpb7-like / SHS2 domain found in N terminus of Rpb7p/Rpc25p/MJ0397 / DNA-directed RNA polymerase subunit RPABC5/Rpb10 / RNA polymerases, subunit N, zinc binding site / RNA polymerase subunit RPB10 / RNA polymerases N / 8 kDa subunit / RNA polymerases N / 8 Kd subunits signature. / DNA-directed RNA polymerase M, 15kDa subunit, conserved site / RNA polymerases M / 15 Kd subunits signature. / DNA-directed RNA polymerase subunit/transcription factor S / : / RNA polymerase, Rpb8 / DNA-directed RNA polymerases I, II, and III subunit RPABC4 / RNA polymerase Rpb8 / RNA polymerase subunit 8 / RNA polymerase, Rpb5, N-terminal / RNA polymerase Rpb5, N-terminal domain superfamily / RNA polymerase Rpb5, N-terminal domain / DNA-directed RNA polymerase, subunit RPB6 / DNA directed RNA polymerase, 7 kDa subunit / RNA polymerase archaeal subunit P/eukaryotic subunit RPABC4 / RNA polymerase, subunit H/Rpb5, conserved site / RNA polymerases H / 23 Kd subunits signature. / RNA polymerase subunit CX / DNA-directed RNA polymerase, 30-40kDa subunit, conserved site / DNA-directed RNA polymerase subunit Rpo3/Rpb3/RPAC1 / RNA polymerases D / 30 to 40 Kd subunits signature. / DNA-directed RNA polymerase Rpb11, 13-16kDa subunit, conserved site / DNA-directed RNA polymerase subunit Rpo11 / RNA polymerases L / 13 to 16 Kd subunits signature. / Zinc finger, TFIIS-type / DNA-directed RNA polymerase subunit Rpo5/Rpb5 / Transcription factor S-II (TFIIS) / Zinc finger TFIIS-type profile. / C2C2 Zinc finger / DNA-directed RNA polymerase, RBP11-like dimerisation domain / RNA polymerase Rpb3/Rpb11 dimerisation domain / RNA polymerase, subunit H/Rpb5 C-terminal / RNA polymerase subunit RPABC4/transcription elongation factor Spt4 / RPB5-like RNA polymerase subunit superfamily / RNA polymerase Rpb5, C-terminal domain / Archaeal Rpo6/eukaryotic RPB6 RNA polymerase subunit / DNA-directed RNA polymerase, 14-18kDa subunit, conserved site / RNA polymerases K / 14 to 18 Kd subunits signature. / RNA polymerase Rpb6 / RNA polymerase, subunit omega/Rpo6/RPB6 / RNA polymerase Rpb6 / RNA polymerase Rpb1, domain 3 superfamily / RPB6/omega subunit-like superfamily / RNA polymerase Rpb1, clamp domain superfamily / RNA polymerase Rpb2, domain 2 superfamily / RNA polymerase Rpb1, domain 3 / RNA polymerase Rpb1, domain 3 / DNA-directed RNA polymerase, subunit beta-prime / RNA polymerase Rpb1, domain 1 / RNA polymerase Rpb1, domain 1 / RNA polymerase, alpha subunit / RNA polymerase Rpb1, domain 5 / RNA polymerase Rpb1, domain 4 / RNA polymerase Rpb1, domain 2 / RNA polymerase Rpb1, domain 5 / RNA polymerase Rpb1, domain 4 / RNA polymerase, beta subunit, protrusion / RNA polymerase beta subunit / RNA polymerase, N-terminal / RNA polymerase Rpb1, funnel domain superfamily / RNA polymerase I subunit A N-terminus / DNA-directed RNA polymerase, insert domain / DNA-directed RNA polymerase, RpoA/D/Rpb3-type / RNA polymerase Rpb3/RpoA insert domain / RNA polymerase Rpb3/Rpb11 dimerisation domain / RNA polymerases D / DNA-directed RNA polymerase, insert domain superfamily / RNA polymerase, RBP11-like subunit / RNA polymerase Rpb2, domain 2 / RNA polymerase Rpb2, domain 2 / RNA polymerase, beta subunit, conserved site / RNA polymerase Rpb2, domain 7 / RNA polymerase Rpb2, domain 3 / RNA polymerase Rpb2, OB-fold / RNA polymerase Rpb2, domain 7 / RNA polymerase Rpb2, domain 3 / RNA polymerases beta chain signature.
Similarity search - Domain/homology
DNA / DNA (> 10) / RNA / DNA-directed RNA polymerases I and III subunit RPAC1 / DNA-directed RNA polymerase I subunit RPA34 / DNA-directed RNA polymerase I subunit RPA1 / DNA-directed RNA polymerases I and III subunit RPAC2 / DNA-directed RNA polymerases I, II, and III subunit RPABC1 / DNA-directed RNA polymerases I, II, and III subunit RPABC3 / DNA-directed RNA polymerases I, II, and III subunit RPABC4 ...DNA / DNA (> 10) / RNA / DNA-directed RNA polymerases I and III subunit RPAC1 / DNA-directed RNA polymerase I subunit RPA34 / DNA-directed RNA polymerase I subunit RPA1 / DNA-directed RNA polymerases I and III subunit RPAC2 / DNA-directed RNA polymerases I, II, and III subunit RPABC1 / DNA-directed RNA polymerases I, II, and III subunit RPABC3 / DNA-directed RNA polymerases I, II, and III subunit RPABC4 / DNA-directed RNA polymerases I, II, and III subunit RPABC2 / DNA-directed RNA polymerases I, II, and III subunit RPABC5 / DNA-directed RNA polymerase I subunit RPA43 / DNA-directed RNA polymerase I subunit RPA49 / DNA-directed RNA polymerase I subunit RPA2 / DNA-directed RNA polymerase I subunit RPA12
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.81 Å
AuthorsZhao, D. / Liu, W. / Chen, K. / Yang, H. / Xu, Y.
Funding support1items
OrganizationGrant numberCountry
Not funded
CitationJournal: Cell Discov / Year: 2021
Title: Structure of the human RNA polymerase I elongation complex.
Authors: Dan Zhao / Weida Liu / Ke Chen / Zihan Wu / Huirong Yang / Yanhui Xu /
Abstract: Eukaryotic RNA polymerase I (Pol I) transcribes ribosomal DNA and generates RNA for ribosome synthesis. Pol I accounts for the majority of cellular transcription activity and dysregulation of Pol I ...Eukaryotic RNA polymerase I (Pol I) transcribes ribosomal DNA and generates RNA for ribosome synthesis. Pol I accounts for the majority of cellular transcription activity and dysregulation of Pol I transcription leads to cancers and ribosomopathies. Despite extensive structural studies of yeast Pol I, structure of human Pol I remains unsolved. Here we determined the structures of the human Pol I in the pre-translocation, post-translocation, and backtracked states at near-atomic resolution. The single-subunit peripheral stalk lacks contacts with the DNA-binding clamp and is more flexible than the two-subunit stalk in yeast Pol I. Compared to yeast Pol I, human Pol I possesses a more closed clamp, which makes more contacts with DNA. The Pol I structure in the post-cleavage backtracked state shows that the C-terminal zinc ribbon of RPA12 inserts into an open funnel and facilitates "dinucleotide cleavage" on mismatched DNA-RNA hybrid. Critical disease-associated mutations are mapped on Pol I regions that are involved in catalysis and complex organization. In summary, the structures provide new sights into human Pol I complex organization and efficient proofreading.
History
DepositionAug 31, 2021Deposition site: PDBJ / Processing site: PDBJ
Revision 1.0Mar 2, 2022Provider: repository / Type: Initial release
Revision 1.1Jun 19, 2024Group: Data collection / Category: chem_comp_atom / chem_comp_bond

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-31877
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: DNA-directed RNA polymerase I subunit RPA1
B: DNA-directed RNA polymerase I subunit RPA2
C: DNA-directed RNA polymerases I and III subunit RPAC1
E: DNA-directed RNA polymerases I, II, and III subunit RPABC1
F: DNA-directed RNA polymerases I, II, and III subunit RPABC2
H: DNA-directed RNA polymerases I, II, and III subunit RPABC3
I: DNA-directed RNA polymerase I subunit RPA12
J: DNA-directed RNA polymerases I, II, and III subunit RPABC5
K: DNA-directed RNA polymerases I and III subunit RPAC2
L: DNA-directed RNA polymerases I, II, and III subunit RPABC4
N: DNA-directed RNA polymerase I subunit RPA34
G: DNA-directed RNA polymerase I subunit RPA43
M: DNA-directed RNA polymerase I subunit RPA49
R: RNA (5'-R(P*UP*GP*CP*UP*GP*AP*CP*U)-3')
T: DNA (25-MER)
U: DNA (5'-D(*CP*TP*GP*TP*CP*CP*TP*CP*TP*GP*GP*CP*GP*A)-3')
hetero molecules


Theoretical massNumber of molelcules
Total (without water)617,39622
Polymers617,04516
Non-polymers3516
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

-
DNA-directed RNA polymerase I subunit ... , 6 types, 6 molecules ABINGM

#1: Protein DNA-directed RNA polymerase I subunit RPA1 / RNA polymerase I subunit A1 / A190 / DNA-directed RNA polymerase I largest subunit / DNA-directed ...RNA polymerase I subunit A1 / A190 / DNA-directed RNA polymerase I largest subunit / DNA-directed RNA polymerase I subunit A / RNA polymerase I 194 kDa subunit / RPA194


Mass: 194911.859 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: POLR1A / Production host: Homo sapiens (human) / References: UniProt: O95602, DNA-directed RNA polymerase
#2: Protein DNA-directed RNA polymerase I subunit RPA2 / RNA polymerase I subunit 2 / DNA-directed RNA polymerase I 135 kDa polypeptide / RPA135


Mass: 128379.219 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: POLR1B / Production host: Homo sapiens (human) / References: UniProt: Q9H9Y6, DNA-directed RNA polymerase
#7: Protein DNA-directed RNA polymerase I subunit RPA12 / DNA-directed RNA polymerase I subunit H / Zinc ribbon domain-containing protein 1


Mass: 13917.695 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: POLR1H, RPA12, ZNRD1 / Production host: Homo sapiens (human) / References: UniProt: Q9P1U0
#11: Protein DNA-directed RNA polymerase I subunit RPA34 / A34.5 / Antisense to ERCC-1 protein / ASE-1 / CD3-epsilon-associated protein / CD3E-associated ...A34.5 / Antisense to ERCC-1 protein / ASE-1 / CD3-epsilon-associated protein / CD3E-associated protein / DNA-directed RNA polymerase I subunit G / RNA polymerase I-associated factor PAF49


Mass: 55065.523 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: POLR1G, ASE1, CAST, CD3EAP, PAF49 / Production host: Homo sapiens (human) / References: UniProt: O15446
#12: Protein DNA-directed RNA polymerase I subunit RPA43 / DNA-directed RNA polymerase I subunit F / Twist neighbor protein


Mass: 37490.379 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: POLR1F, TWISTNB / Production host: Homo sapiens (human) / References: UniProt: Q3B726
#13: Protein DNA-directed RNA polymerase I subunit RPA49 / RNA polymerase I subunit A49 / DNA-directed RNA polymerase I subunit E / RNA polymerase I- ...RNA polymerase I subunit A49 / DNA-directed RNA polymerase I subunit E / RNA polymerase I-associated factor 1 / RNA polymerase I-associated factor 53


Mass: 47330.234 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: POLR1E, PAF53, PRAF1 / Production host: Homo sapiens (human) / References: UniProt: Q9GZS1

-
DNA-directed RNA polymerases I and III subunit ... , 2 types, 2 molecules CK

#3: Protein DNA-directed RNA polymerases I and III subunit RPAC1 / RNA polymerases I and III subunit AC1 / AC40 / DNA-directed RNA polymerases I and III 40 kDa ...RNA polymerases I and III subunit AC1 / AC40 / DNA-directed RNA polymerases I and III 40 kDa polypeptide / RPA40 / RPA39 / RPC40


Mass: 39301.672 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: POLR1C, POLR1E / Production host: Homo sapiens (human) / References: UniProt: O15160
#9: Protein DNA-directed RNA polymerases I and III subunit RPAC2 / RNA polymerases I and III subunit AC2 / AC19 / DNA-directed RNA polymerase I subunit D / RNA ...RNA polymerases I and III subunit AC2 / AC19 / DNA-directed RNA polymerase I subunit D / RNA polymerase I 16 kDa subunit / RPA16 / RPC16 / hRPA19


Mass: 15259.222 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: POLR1D / Production host: Homo sapiens (human) / References: UniProt: P0DPB6

-
DNA-directed RNA polymerases I, II, and III subunit ... , 5 types, 5 molecules EFHJL

#4: Protein DNA-directed RNA polymerases I, II, and III subunit RPABC1 / RNA polymerases I / II / and III subunit ABC1 / DNA-directed RNA polymerase II 23 kDa polypeptide / ...RNA polymerases I / II / and III subunit ABC1 / DNA-directed RNA polymerase II 23 kDa polypeptide / DNA-directed RNA polymerase II subunit E / RPB5 homolog / XAP4


Mass: 24584.223 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: POLR2E / Production host: Homo sapiens (human) / References: UniProt: P19388
#5: Protein DNA-directed RNA polymerases I, II, and III subunit RPABC2 / RNA polymerases I / II / and III subunit ABC2 / DNA-directed RNA polymerase II subunit F / DNA- ...RNA polymerases I / II / and III subunit ABC2 / DNA-directed RNA polymerase II subunit F / DNA-directed RNA polymerases I / and III 14.4 kDa polypeptide / RPABC14.4 / RPB14.4 / RPB6 homolog / RPC15


Mass: 14491.026 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: POLR2F, POLRF / Production host: Homo sapiens (human) / References: UniProt: P61218
#6: Protein DNA-directed RNA polymerases I, II, and III subunit RPABC3 / RNA polymerases I / II / and III subunit ABC3 / DNA-directed RNA polymerase II subunit H / DNA- ...RNA polymerases I / II / and III subunit ABC3 / DNA-directed RNA polymerase II subunit H / DNA-directed RNA polymerases I / and III 17.1 kDa polypeptide / RPB17 / RPB8 homolog / hRPB8


Mass: 17162.273 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: POLR2H / Production host: Homo sapiens (human) / References: UniProt: P52434
#8: Protein DNA-directed RNA polymerases I, II, and III subunit RPABC5 / RNA polymerases I / II / and III subunit ABC5 / DNA-directed RNA polymerase III subunit L / RNA ...RNA polymerases I / II / and III subunit ABC5 / DNA-directed RNA polymerase III subunit L / RNA polymerase II 7.6 kDa subunit / RPB7.6 / RPB10 homolog


Mass: 7655.123 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: POLR2L / Production host: Homo sapiens (human) / References: UniProt: P62875
#10: Protein DNA-directed RNA polymerases I, II, and III subunit RPABC4 / RNA polymerases I / II / and III subunit ABC4 / ABC10-alpha / DNA-directed RNA polymerase II ...RNA polymerases I / II / and III subunit ABC4 / ABC10-alpha / DNA-directed RNA polymerase II subunit K / RNA polymerase II 7.0 kDa subunit / RPB7.0 / RPB10alpha


Mass: 7018.244 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: POLR2K / Production host: Homo sapiens (human) / References: UniProt: P53803

-
RNA chain , 1 types, 1 molecules R

#14: RNA chain RNA (5'-R(P*UP*GP*CP*UP*GP*AP*CP*U)-3')


Mass: 2503.521 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Homo sapiens (human)

-
DNA chain , 2 types, 2 molecules TU

#15: DNA chain DNA (25-MER)


Mass: 7727.002 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Homo sapiens (human)
#16: DNA chain DNA (5'-D(*CP*TP*GP*TP*CP*CP*TP*CP*TP*GP*GP*CP*GP*A)-3')


Mass: 4247.753 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Homo sapiens (human)

-
Non-polymers , 2 types, 6 molecules

#17: Chemical
ChemComp-ZN / ZINC ION


Mass: 65.409 Da / Num. of mol.: 5 / Source method: obtained synthetically / Formula: Zn
#18: Chemical ChemComp-MG / MAGNESIUM ION


Mass: 24.305 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: Mg

-
Details

Has ligand of interestN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: post state of human RNA Polymerase I Elongation Complex
Type: COMPLEX / Entity ID: #1-#16 / Source: RECOMBINANT
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Homo sapiens (human)
Buffer solutionpH: 7.4
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD
Image recordingElectron dose: 50 e/Å2 / Film or detector model: GATAN K2 SUMMIT (4k x 4k)

-
Processing

CTF correctionType: NONE
3D reconstructionResolution: 2.81 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 183087 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more