[English] 日本語
Yorodumi- EMDB-40882: Cryo-EM structure of the Escherichia coli 70S ribosome in complex... -
+Open data
-Basic information
Entry | Database: EMDB / ID: EMD-40882 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | Cryo-EM structure of the Escherichia coli 70S ribosome in complex with amikacin, mRNA, and A-, P-, and E-site tRNAs | |||||||||||||||
Map data | Escherichia coli 70S ribosome in complex with amikacin, mRNA, and A-, P-, and E-site tRNAs | |||||||||||||||
Sample |
| |||||||||||||||
Keywords | Antibiotic / aminoglycoside / amikacin / cryo-EM / tRNA / RIBOSOME | |||||||||||||||
Function / homology | Function and homology information negative regulation of cytoplasmic translational initiation / positive regulation of ribosome biogenesis / DnaA-L2 complex / negative regulation of DNA-templated DNA replication initiation / negative regulation of translational initiation / mRNA regulatory element binding translation repressor activity / ribosome assembly / assembly of large subunit precursor of preribosome / cytosolic ribosome assembly / transcription antitermination ...negative regulation of cytoplasmic translational initiation / positive regulation of ribosome biogenesis / DnaA-L2 complex / negative regulation of DNA-templated DNA replication initiation / negative regulation of translational initiation / mRNA regulatory element binding translation repressor activity / ribosome assembly / assembly of large subunit precursor of preribosome / cytosolic ribosome assembly / transcription antitermination / regulation of cell growth / translational initiation / DNA-templated transcription termination / maintenance of translational fidelity / mRNA 5'-UTR binding / ribosomal small subunit biogenesis / small ribosomal subunit rRNA binding / large ribosomal subunit / ribosome binding / ribosomal small subunit assembly / small ribosomal subunit / 5S rRNA binding / large ribosomal subunit rRNA binding / transferase activity / cytosolic small ribosomal subunit / ribosomal large subunit assembly / cytoplasmic translation / cytosolic large ribosomal subunit / tRNA binding / negative regulation of translation / rRNA binding / ribosome / structural constituent of ribosome / ribonucleoprotein complex / translation / response to antibiotic / mRNA binding / RNA binding / zinc ion binding / membrane / cytosol / cytoplasm Similarity search - Function | |||||||||||||||
Biological species | Escherichia coli (E. coli) / Escherichia phage T4 (virus) | |||||||||||||||
Method | single particle reconstruction / cryo EM / Resolution: 2.9 Å | |||||||||||||||
Authors | Seely SM / Gagnon MG | |||||||||||||||
Funding support | United States, 4 items
| |||||||||||||||
Citation | Journal: Nat Commun / Year: 2023 Title: Molecular basis of the pleiotropic effects by the antibiotic amikacin on the ribosome. Authors: Savannah M Seely / Narayan P Parajuli / Arindam De Tarafder / Xueliang Ge / Suparna Sanyal / Matthieu G Gagnon / Abstract: Aminoglycosides are a class of antibiotics that bind to ribosomal RNA and exert pleiotropic effects on ribosome function. Amikacin, the semisynthetic derivative of kanamycin, is commonly used for ...Aminoglycosides are a class of antibiotics that bind to ribosomal RNA and exert pleiotropic effects on ribosome function. Amikacin, the semisynthetic derivative of kanamycin, is commonly used for treating severe infections with multidrug-resistant, aerobic Gram-negative bacteria. Amikacin carries the 4-amino-2-hydroxy butyrate (AHB) moiety at the N amino group of the central 2-deoxystreptamine (2-DOS) ring, which may confer amikacin a unique ribosome inhibition profile. Here we use in vitro fast kinetics combined with X-ray crystallography and cryo-EM to dissect the mechanisms of ribosome inhibition by amikacin and the parent compound, kanamycin. Amikacin interferes with tRNA translocation, release factor-mediated peptidyl-tRNA hydrolysis, and ribosome recycling, traits attributed to the additional interactions amikacin makes with the decoding center. The binding site in the large ribosomal subunit proximal to the 3'-end of tRNA in the peptidyl (P) site lays the groundwork for rational design of amikacin derivatives with improved antibacterial properties. | |||||||||||||||
History |
|
-Structure visualization
Supplemental images |
---|
-Downloads & links
-EMDB archive
Map data | emd_40882.map.gz | 256.5 MB | EMDB map data format | |
---|---|---|---|---|
Header (meta data) | emd-40882-v30.xml emd-40882.xml | 79.6 KB 79.6 KB | Display Display | EMDB header |
Images | emd_40882.png | 211.4 KB | ||
Masks | emd_40882_msk_1.map | 512 MB | Mask map | |
Filedesc metadata | emd-40882.cif.gz | 15.2 KB | ||
Others | emd_40882_additional_1.map.gz emd_40882_half_map_1.map.gz emd_40882_half_map_2.map.gz | 263.7 MB 475.5 MB 475.5 MB | ||
Archive directory | http://ftp.pdbj.org/pub/emdb/structures/EMD-40882 ftp://ftp.pdbj.org/pub/emdb/structures/EMD-40882 | HTTPS FTP |
-Validation report
Summary document | emd_40882_validation.pdf.gz | 1.2 MB | Display | EMDB validaton report |
---|---|---|---|---|
Full document | emd_40882_full_validation.pdf.gz | 1.2 MB | Display | |
Data in XML | emd_40882_validation.xml.gz | 18.7 KB | Display | |
Data in CIF | emd_40882_validation.cif.gz | 22.2 KB | Display | |
Arichive directory | https://ftp.pdbj.org/pub/emdb/validation_reports/EMD-40882 ftp://ftp.pdbj.org/pub/emdb/validation_reports/EMD-40882 | HTTPS FTP |
-Related structure data
Related structure data | 8sylMC 8ev6C 8ev7C M: atomic model generated by this map C: citing same article (ref.) |
---|---|
Similar structure data | Similarity search - Function & homologyF&H Search |
-Links
EMDB pages | EMDB (EBI/PDBe) / EMDataResource |
---|---|
Related items in Molecule of the Month |
-Map
File | Download / File: emd_40882.map.gz / Format: CCP4 / Size: 512 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | Escherichia coli 70S ribosome in complex with amikacin, mRNA, and A-, P-, and E-site tRNAs | ||||||||||||||||||||||||||||||||||||
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 0.83 Å | ||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-Mask #1
File | emd_40882_msk_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-Additional map: Escherichia coli 70S ribosome in complex with amikacin,...
File | emd_40882_additional_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | Escherichia coli 70S ribosome in complex with amikacin, mRNA, and A-, P-, and E-site tRNAs. Sharpened map. | ||||||||||||
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: Escherichia coli 70S ribosome in complex with amikacin,...
File | emd_40882_half_map_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | Escherichia coli 70S ribosome in complex with amikacin, mRNA, and A-, P-, and E-site tRNAs. Half map. | ||||||||||||
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: Escherichia coli 70S ribosome in complex with amikacin,...
File | emd_40882_half_map_2.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | Escherichia coli 70S ribosome in complex with amikacin, mRNA, and A-, P-, and E-site tRNAs. Half map. | ||||||||||||
Projections & Slices |
| ||||||||||||
Density Histograms |
-Sample components
+Entire : Escherichia coli 70S ribosome in complex with amikacin, mRNA, and...
+Supramolecule #1: Escherichia coli 70S ribosome in complex with amikacin, mRNA, and...
+Macromolecule #1: 16S Ribosomal RNA
+Macromolecule #22: phenylalanine tRNA
+Macromolecule #23: P-site initiator tRNA
+Macromolecule #24: M-F-Stop mRNA
+Macromolecule #25: 23S Ribosomal RNA
+Macromolecule #26: 5S Ribosomal RNA
+Macromolecule #2: 30S ribosomal protein S2
+Macromolecule #3: 30S ribosomal protein S3
+Macromolecule #4: 30S ribosomal protein S4
+Macromolecule #5: 30S ribosomal protein S5
+Macromolecule #6: 30S ribosomal protein S6
+Macromolecule #7: 30S ribosomal protein S7
+Macromolecule #8: 30S ribosomal protein S8
+Macromolecule #9: 30S ribosomal protein S9
+Macromolecule #10: 30S ribosomal protein S10
+Macromolecule #11: 30S ribosomal protein S11
+Macromolecule #12: 30S ribosomal protein S12
+Macromolecule #13: 30S ribosomal protein S13
+Macromolecule #14: 30S ribosomal protein S14
+Macromolecule #15: 30S ribosomal protein S15
+Macromolecule #16: 30S ribosomal protein S16
+Macromolecule #17: 30S ribosomal protein S17
+Macromolecule #18: 30S ribosomal protein S18
+Macromolecule #19: 30S ribosomal protein S19
+Macromolecule #20: 30S ribosomal protein S20
+Macromolecule #21: 30S ribosomal protein S21
+Macromolecule #27: 50S ribosomal protein L2
+Macromolecule #28: 50S ribosomal protein L3
+Macromolecule #29: 50S ribosomal protein L4
+Macromolecule #30: 50S ribosomal protein L5
+Macromolecule #31: 50S ribosomal protein L6
+Macromolecule #32: 50S ribosomal protein L9
+Macromolecule #33: 50S ribosomal protein L13
+Macromolecule #34: 50S ribosomal protein L14
+Macromolecule #35: 50S ribosomal protein L15
+Macromolecule #36: 50S ribosomal protein L16
+Macromolecule #37: 50S ribosomal protein L17
+Macromolecule #38: 50S ribosomal protein L18
+Macromolecule #39: 50S ribosomal protein L19
+Macromolecule #40: 50S ribosomal protein L20
+Macromolecule #41: Ribosomal protein L21
+Macromolecule #42: 50S ribosomal protein L22
+Macromolecule #43: 50S ribosomal protein L23
+Macromolecule #44: 50S ribosomal protein L24
+Macromolecule #45: 50S ribosomal protein L25
+Macromolecule #46: 50S ribosomal protein L27
+Macromolecule #47: 50S ribosomal protein L28
+Macromolecule #48: 50S ribosomal protein L29
+Macromolecule #49: 50S ribosomal protein L30
+Macromolecule #50: 50S ribosomal protein L31
+Macromolecule #51: 50S ribosomal protein L32
+Macromolecule #52: 50S ribosomal protein L33
+Macromolecule #53: 50S ribosomal protein L34
+Macromolecule #54: 50S ribosomal protein L35
+Macromolecule #55: 50S ribosomal protein L36
+Macromolecule #56: MAGNESIUM ION
+Macromolecule #57: (2S)-N-[(1R,2S,3S,4R,5S)-4-[(2R,3R,4S,5S,6R)-6-(aminomethyl)-3,4,...
+Macromolecule #58: PHENYLALANINE
+Macromolecule #59: ZINC ION
+Macromolecule #60: water
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
Processing | single particle reconstruction |
Aggregation state | particle |
-Sample preparation
Concentration | 1.3 mg/mL |
---|---|
Buffer | pH: 7.4 |
Grid | Model: Quantifoil R2/1 / Material: GOLD / Mesh: 200 / Support film - Material: GOLD / Support film - topology: HOLEY / Pretreatment - Type: GLOW DISCHARGE / Pretreatment - Time: 30 sec. / Pretreatment - Atmosphere: OTHER |
Vitrification | Cryogen name: ETHANE / Chamber humidity: 85 % / Chamber temperature: 295 K / Instrument: LEICA EM GP |
-Electron microscopy
Microscope | TFS KRIOS |
---|---|
Specialist optics | Energy filter - Name: GIF Bioquantum / Energy filter - Slit width: 20 eV |
Image recording | Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k) / Detector mode: COUNTING / Number grids imaged: 1 / Number real images: 10000 / Average electron dose: 40.5852 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN |
Electron optics | C2 aperture diameter: 100.0 µm / Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Cs: 2.7 mm / Nominal defocus max: 2.0 µm / Nominal defocus min: 0.7000000000000001 µm / Nominal magnification: 105000 |
Sample stage | Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER / Cooling holder cryogen: NITROGEN |
Experimental equipment | Model: Titan Krios / Image courtesy: FEI Company |