[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleComputational design of a high-precision mitochondrial DNA cytosine base editor.
Journal, issue, pagesNat Struct Mol Biol, Vol. 32, Issue 12, Page 2575-2586, Year 2025
Publish dateNov 17, 2025
AuthorsLi Mi / Yu-Xuan Li / Xinchen Lv / Zi-Li Wan / Xu Liu / Kairan Zhang / Huican Li / Yue Yao / Leping Zhang / Zhe Xu / Xingyu Zhuang / Kunqian Ji / Min Jiang / Yangming Wang / Peilong Lu /
PubMed AbstractBystander editing remains a major limitation of current base editors, hindering their precision and therapeutic potential. Here, we present a de novo protein design strategy that creates a ...Bystander editing remains a major limitation of current base editors, hindering their precision and therapeutic potential. Here, we present a de novo protein design strategy that creates a structurally rigid interface between a DNA-binding TALE domain and a cytosine deaminase, forming a unified editing module termed TALE-oriented deaminase (TOD). Cryo-EM analysis of TOD-DNA complexes confirms that this precise spatial architecture tightly restricts the deaminase activity window, thereby minimizing unwanted deamination. To further enhance editing specificity, we develop a split version, termed DdCBE-TOD, which virtually eliminates off-target editing. As a proof of concept, we apply DdCBE-TOD to generate a mitochondrial disease mouse model and to correct a pathogenic mutation associated with MERRF syndrome in patient-derived cells, achieving single-nucleotide precision. This work introduces a generalizable and computationally guided approach for ultra-precise base editing, offering a promising platform for both mechanistic studies and therapeutic correction of single-nucleotide mutations.
External linksNat Struct Mol Biol / PubMed:41249818
MethodsEM (single particle)
Resolution2.64 - 3.18 Å
Structure data

EMDB-62995, PDB-9lcx:
Inactive TOD6 with AC DNA substrate
Method: EM (single particle) / Resolution: 3.18 Å

EMDB-62996, PDB-9lcy:
Inactivate TOD6 with TC DNA substrate
Method: EM (single particle) / Resolution: 3.02 Å

EMDB-62997, PDB-9lcz:
Inactivate TOD6 with GC DNA substrate
Method: EM (single particle) / Resolution: 2.93 Å

EMDB-62998, PDB-9ld0:
Inactivate TOD6 with CC DNA substrate
Method: EM (single particle) / Resolution: 3.17 Å

EMDB-62999, PDB-9ld1:
Inactivate TOD4 with TC DNA substrate
Method: EM (single particle) / Resolution: 2.64 Å

Chemicals

ChemComp-ZN:
Unknown entry

Source
  • burkholderia cenocepacia (bacteria)
  • synthetic construct (others)
  • xanthomonas (bacteria)
KeywordsDE NOVO PROTEIN / De novo design / DNA-binding TALE domain / deaminase (Ddd_Ss) / orienting domain / deaminase(Ddd_Ss)

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbjlvh1.pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more