[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleStructure of the T=13 capsid of infectious pancreatic necrosis virus (IPNV)-a salmonid birnavirus.
Journal, issue, pagesJ Virol, Vol. 99, Issue 2, Page e0145424, Year 2025
Publish dateFeb 25, 2025
AuthorsAnna Munke / Amr Ahmed Abdelrahim Gamil / Aase B Mikalsen / Han Wang / Øystein Evensen / Kenta Okamoto /
PubMed AbstractBirnaviruses infect a broad range of vertebrate hosts, including fish and birds, and cause substantial economic losses in the fishery and livestock industries. The infectious pancreatic necrosis ...Birnaviruses infect a broad range of vertebrate hosts, including fish and birds, and cause substantial economic losses in the fishery and livestock industries. The infectious pancreatic necrosis virus (IPNV), an aquabirnavirus, specifically infects salmonids. While structures on T=1 subviral particles of the birnaviruses, including IPNV, have been studied, structural insights into the infectious T=13 particles have been limited to the infectious bursal disease virus (IBDV), an avibirnavirus. Determining the capsid structure of the T=13 particle of IPNV is crucial for advancing knowledge of its antigenicity, capsid assembly, and possible functional structures. Here, the capsid structure of the IPNV L5 strain has been determined at a resolution of 2.75 Å. The overall structure resembles the T=13 IBDV structure, with notable differences in the surface loops on the P domain of the VP2 capsid protein essential for antigenicity and virulence. Additionally, previously undescribed structural features have been identified, including the C-terminal regions of the VP2 subunits within the pentagonal assembly unit at each 5-fold axis, which interlock with adjacent VP2 subunits. This interlocking, together with class-averaged projections of triangular and pentagonal units, suggests that the pentagonal unit formation could be important for a correct T=13 particle assembly, preventing the formation of T=1 subviral particles. Furthermore, positively charged residues in obstructed capsid pores at each 5-fold axis are speculated to facilitate intraparticle genome synthesis of IPNV.IMPORTANCEAquabirnaviruses cause deadly infectious diseases in salmonid fish, posing significant challenges for both wild and farmed fish populations. The most prevalent aquabirnavirus worldwide is the infectious pancreatic necrosis virus, whose multifunctional capsid is critical to its infection, replication, and maturation. Previously, research has focused on the structure of the virus' non-infectious subviral capsid. In this study, however, the first structure of the large, infectious, and functional form of the capsid has been determined. This new capsid structure reveals functional motifs that were previously unclear in the non-infectious capsid. These motifs are believed to be essential for the virus' replication and particle assembly, making them promising targets for developing strategies to control virus proliferation.
External linksJ Virol / PubMed:39817769 / PubMed Central
MethodsEM (single particle)
Resolution2.75 Å
Structure data

EMDB-51321, PDB-9gg2:
Structure of IPNV L5 capsid
Method: EM (single particle) / Resolution: 2.75 Å

Source
  • infectious pancreatic necrosis virus
KeywordsVIRUS / Salmoid / Capsid / Birnavirus / Infectious pancreatic necrosis virus / IPNV

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more