[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleOrnithine capture by a translating ribosome controls bacterial polyamine synthesis.
Journal, issue, pagesNat Microbiol, Vol. 5, Issue 4, Page 554-561, Year 2020
Publish dateFeb 24, 2020
AuthorsAlba Herrero Del Valle / Britta Seip / Iñaki Cervera-Marzal / Guénaël Sacheau / A Carolin Seefeldt / C Axel Innis /
PubMed AbstractPolyamines are essential metabolites that play an important role in cell growth, stress adaptation and microbial virulence. To survive and multiply within a human host, pathogenic bacteria adjust the ...Polyamines are essential metabolites that play an important role in cell growth, stress adaptation and microbial virulence. To survive and multiply within a human host, pathogenic bacteria adjust the expression and activity of polyamine biosynthetic enzymes in response to different environmental stresses and metabolic cues. Here, we show that ornithine capture by the ribosome and the nascent peptide SpeFL controls polyamine synthesis in γ-proteobacteria by inducing the expression of the ornithine decarboxylase SpeF, via a mechanism involving ribosome stalling and transcription antitermination. In addition, we present the cryogenic electron microscopy structure of an Escherichia coli ribosome stalled during translation of speFL in the presence of ornithine. The structure shows how the ribosome and the SpeFL sensor domain form a highly selective binding pocket that accommodates a single ornithine molecule but excludes near-cognate ligands. Ornithine pre-associates with the ribosome and is then held in place by the sensor domain, leading to the compaction of the SpeFL effector domain and blocking the action of release factor 1. Thus, our study not only reveals basic strategies by which nascent peptides assist the ribosome in detecting a specific metabolite, but also provides a framework for assessing how ornithine promotes virulence in several human pathogens.
External linksNat Microbiol / PubMed:32094585 / PubMed Central
MethodsEM (single particle)
Resolution2.7 Å
Structure data

EMDB-10453, PDB-6tbv:
Cryo-EM structure of an Escherichia coli ribosome-SpeFL complex stalled in response to L-ornithine (Replicate 2)
Method: EM (single particle) / Resolution: 2.7 Å

EMDB-10458, PDB-6tc3:
Cryo-EM structure of an Escherichia coli ribosome-SpeFL complex stalled in response to L-ornithine (Replicate 1)
Method: EM (single particle) / Resolution: 2.7 Å

Chemicals

ChemComp-MG:
Unknown entry

ChemComp-K:
Unknown entry

ChemComp-UNX:
Unknown entry

ChemComp-ZN:
Unknown entry

ChemComp-ORN:
L-ornithine

ChemComp-HOH:
WATER

Source
  • escherichia coli k-12 (bacteria)
KeywordsRIBOSOME / SpeFL / arrest peptide / ornithine / protein synthesis

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbjlvh1.pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more