[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleStructural basis of the inhibition of TRPV1 by analgesic sesquiterpenes.
Journal, issue, pagesProc Natl Acad Sci U S A, Vol. 122, Issue 29, Page e2506560122, Year 2025
Publish dateJul 22, 2025
AuthorsRaúl Sánchez-Hernández / Miguel Benítez-Angeles / Irina A Talyzina / Itzel Llorente / Mariela González-Avendaño / Félix Sierra / Angélica Méndez-Reséndiz / Francisco Mercado / Ariela Vergara-Jaque / Alexander I Sobolevsky / León D Islas / Tamara Rosenbaum /
PubMed AbstractThe Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed in primary nociceptive afferents, which participate in processes such as pain and inflammation. Considerable efforts have ...The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed in primary nociceptive afferents, which participate in processes such as pain and inflammation. Considerable efforts have been directed toward finding inhibitors of TRPV1 and understanding the molecular details of their interactions with this channel. α-humulene (AH) is a sesquiterpene derived from plants such as hops and other members of Cannabaceae family, with a long history of popular use as an analgesic and anti-inflammatory. Using a combination of behavioral assays, electrophysiology, site-directed mutagenesis, cryo-EM, and molecular dynamics simulations, we show that AH inhibits TRPV1-related pain responses and currents by interacting with a region composed of the S2, S2-S3 linker, and S3 transmembrane segments and stabilizing the closed conformation of the channel. The interaction of ligands in this region of the TRPV1 channel has not been previously described and the results of the present study highlight that it may constitute part of a negative regulatory region. These findings allow us to understand the molecular basis by which substances such as some sesquiterpenes, abundantly found in medicinal plants used by humans for hundreds of years, reduce pain. Pain management can include the use of opioids, which results in hepatic and renal damage and possible addiction. Our study offers insight into a poorly understood group of compounds that could be used as scaffold to produce novel nonopioid analgesic therapies and clarifies the molecular mechanisms that underlie the effects of these analgesic molecules.
External linksProc Natl Acad Sci U S A / PubMed:40663614 / PubMed Central
MethodsEM (single particle)
Resolution2.74 Å
Structure data

EMDB-71303, PDB-9p6b:
Cryo-EM structure of full-length human TRPV1 in the presence of alpha-humulene
Method: EM (single particle) / Resolution: 2.74 Å

Chemicals

ChemComp-POV:
(2S)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propyl 2-(trimethylammonio)ethyl phosphate / phospholipid*YM

ChemComp-8IJ:
(2R)-3-{[(R)-hydroxy{[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy}phosphoryl]oxy}propane-1,2-diyl dioctadecanoate

ChemComp-TRD:
TRIDECANE

ChemComp-NA:
Unknown entry

ChemComp-HOH:
WATER

Source
  • homo sapiens (human)
KeywordsMEMBRANE PROTEIN / transient receptor potential V family member 1 / TRP / channel / TRPV1 / TRP channels / sesquiterpene / alpha-humulene / pain / analgesia

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more