[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleProteome Landscapes Decode Organelle Vulnerabilities in cortical and dopaminergic-like induced neurons Across Lysosomal Storage Disorders.
Journal, issue, pagesbioRxiv, Year 2025
Publish dateOct 8, 2025
AuthorsFelix Kraus / Yuchen He / Yizhi Jiang / Delong Li / Yohannes A Ambaw / Federico M Gasparoli / Joao A Paulo / Tobias C Walther / Robert V Farese / Steven P Gygi / Florian Wilfling / J Wade Harper /
PubMed AbstractLysosomes maintain cellular homeostasis by degrading proteins delivered via endocytosis and autophagy and recycling building blocks for organelle biogenesis. Lysosomal Storage Disorders (LSDs) ...Lysosomes maintain cellular homeostasis by degrading proteins delivered via endocytosis and autophagy and recycling building blocks for organelle biogenesis. Lysosomal Storage Disorders (LSDs) comprise a broad group of diseases affecting lysosomal degradation, ion flux, and lipid catabolism. Within this group, sphingolipidoses genes involved in glycosphingolipid breakdown are known () or candidate (, ) risk factors for Parkinson's Disease, though disease mechanisms remain unclear. Using our previously reported LSD mutant proteomic landscape in HeLa cells, we observed pronounced variability in endolysosomal proteome signatures among sphingolipid pathway mutants, with cells showing altered lysosomal lipid composition, impaired endocytic trafficking, and disrupted ultrastructure by cryo-electron tomography. To extend these findings in a more physiologic context, we generated a human embryonic stem (ES) cell library comprising 23 LSD gene knockouts and profiled proteomic changes during differentiation into cortical and midbrain dopaminergic neurons over a 7 to 10 week period. LSD mutants exhibited lineage-specific alterations in organellar proteomes, revealing diverse vulnerabilities. Notably, and dopaminergic neurons showed disruptions in synaptic and mitochondrial compartments, correlating with impaired dopaminergic neuronal firing and disrupted presynaptic protein localization. This LSD mutant toolkit and associated proteomic landscape provides a resource for defining molecular signatures of LSD gene loss and highlights convergence of lysosomal dysfunction, synaptic integrity, and mitochondrial health as potential links between sphingolipidoses and PD risk.
External linksbioRxiv / PubMed:41279717 / PubMed Central
MethodsEM (tomography)
Structure data

EMDB-55210: In situ cryo-ET tomogram of HeLa TMEM192-3xHA Control cell showcasing an endolysosomal structure.
Method: EM (tomography)

EMDB-55211: In situ cryo-ET tomogram of HeLa TMEM192-3xHA ASAH1-/- cell showcasing an endolysosomal structure
Method: EM (tomography)

Source
  • Homo sapiens (human)

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more