[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleCitrus sudden death-associated virus as a new expression vector for rapid production of heterologous proteins, chimeric virions, and virus-like particles.
Journal, issue, pagesBiotechnol Rep (Amst), Vol. 35, Page e00739, Year 2022
Publish dateMay 17, 2022
AuthorsEmilyn E Matsumura / Fei Guo / Daan Boogers / Dennis van Oevelen / Sandra T Vu / Bryce W Falk /
PubMed AbstractThe more we understand the strategies used by viruses for protein expression, the more possibilities we have to exploit viruses as expression vectors for heterologous protein production. Advances in ...The more we understand the strategies used by viruses for protein expression, the more possibilities we have to exploit viruses as expression vectors for heterologous protein production. Advances in the development of virus-based expression systems have been possible due to generation of many virus infectious clones, especially those derived from plant viruses, which have the capability for rapid and high-level transient expression of proteins in plant cells, a robust and low-cost bioreactor. In this work, we generated new replicative virus expression vectors based on a previously constructed citrus sudden death-associated virus (CSDaV) infectious cDNA clone. These vectors were generated to express the reporter green fluorescent protein (GFP) in leaves by taking advantage of the expression strategies used by CSDaV to produce its structural proteins. We show that higher amounts of GFP can be produced from a coat protein (CP)-independent CSDaV-based vector, compared to levels of GFP expressed from a widely used non-replicative vector (pEAQ series); or GFP can be produced in fusion with the major CSDaV CP (CPp21) to be incorporated into chimeric virions. However, GFP-recombinant CSDaV virions do not appear uniformly assembled, but more likely as mosaic particles. Cryo-electron microscopy analysis from this work revealed the structures of the wild-type and the GFP-recombinant CSDaV virions, but it was not able to reveal where exactly the GFP is displayed in the chimeric virions. We show though that the incorporation of GFP-CPp21 fusion protein into virions occurs solely due to its interaction with free/non-fused CPp21, independent of other viral proteins. Therefore, individual co-expression of GFP-CPp21 and CPp21 in the same plant cells leads to the production of chimeric virus-like particles (VLPs), while GFP-CPp21 fusion protein itself is not able to self-assemble into VLPs. The new CSDaV-based expression vectors may provide an alternative platform for use in molecular farming, either for production of heterologous proteins or as scaffold for heterologous protein display.
External linksBiotechnol Rep (Amst) / PubMed:35646618 / PubMed Central
MethodsEM (single particle)
Resolution3.1 - 3.4 Å
Structure data

EMDB-25397, PDB-7sqy:
CSDaV GFP mutant
Method: EM (single particle) / Resolution: 3.4 Å

EMDB-25398: CSDaV wilde-type
PDB-7sqz: CSDaV wild-type
Method: EM (single particle) / Resolution: 3.1 Å

Source
  • citrus sudden death-associated virus
  • aequorea victoria (jellyfish)
KeywordsVIRUS / Capsid / coat protein

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more