[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleStructural basis of ribosomal 30S subunit degradation by RNase R.
Journal, issue, pagesNature, Vol. 626, Issue 8001, Page 1133-1140, Year 2024
Publish dateFeb 7, 2024
AuthorsLyudmila Dimitrova-Paternoga / Sergo Kasvandik / Bertrand Beckert / Sander Granneman / Tanel Tenson / Daniel N Wilson / Helge Paternoga /
PubMed AbstractProtein synthesis is a major energy-consuming process of the cell that requires the controlled production and turnover of ribosomes. Although the past few years have seen major advances in our ...Protein synthesis is a major energy-consuming process of the cell that requires the controlled production and turnover of ribosomes. Although the past few years have seen major advances in our understanding of ribosome biogenesis, structural insight into the degradation of ribosomes has been lacking. Here we present native structures of two distinct small ribosomal 30S subunit degradation intermediates associated with the 3' to 5' exonuclease ribonuclease R (RNase R). The structures reveal that RNase R binds at first to the 30S platform to facilitate the degradation of the functionally important anti-Shine-Dalgarno sequence and the decoding-site helix 44. RNase R then encounters a roadblock when it reaches the neck region of the 30S subunit, and this is overcome by a major structural rearrangement of the 30S head, involving the loss of ribosomal proteins. RNase R parallels this movement and relocates to the decoding site by using its N-terminal helix-turn-helix domain as an anchor. In vitro degradation assays suggest that head rearrangement poses a major kinetic barrier for RNase R, but also indicate that the enzyme alone is sufficient for complete degradation of 30S subunits. Collectively, our results provide a mechanistic basis for the degradation of 30S mediated by RNase R, and reveal that RNase R targets orphaned 30S subunits using a dynamic mechanism involving an anchored switching of binding sites.
External linksNature / PubMed:38326618 / PubMed Central
MethodsEM (single particle)
Resolution3.1 - 4.73 Å
Structure data

EMDB-16595, PDB-8cdu:
Rnase R bound to a 30S degradation intermediate (main state)
Method: EM (single particle) / Resolution: 3.1 Å

EMDB-16596, PDB-8cdv:
Rnase R bound to a 30S degradation intermediate (state II)
Method: EM (single particle) / Resolution: 4.73 Å

EMDB-16605, PDB-8cec:
Rnase R bound to a 30S degradation intermediate (State I - head-turning)
Method: EM (single particle) / Resolution: 3.57 Å

EMDB-16606, PDB-8ced:
Rnase R bound to a 30S degradation intermediate (State I - head-turning)
Method: EM (single particle) / Resolution: 4.15 Å

EMDB-16607, PDB-8cee:
Rnase R bound to a 30S degradation intermediate (State I - head-turning)
Method: EM (single particle) / Resolution: 3.7 Å

Source
  • bacillus subtilis subsp. subtilis str. 168 (bacteria)
KeywordsRIBOSOME / SSU / 30S / RNase R / ribosomal degradation / turnover

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more