[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleIdentification of two p23 co-chaperone isoforms in Leishmania braziliensis exhibiting similar structures and Hsp90 interaction properties despite divergent stabilities.
Journal, issue, pagesFEBS J, Vol. 282, Issue 2, Page 388-406, Year 2015
Publish dateNov 21, 2014
AuthorsFernanda A H Batista / Glessler S Almeida / Thiago V Seraphim / Kelly P Silva / Silvane M F Murta / Leandro R S Barbosa / Júlio C Borges /
PubMed AbstractThe small acidic protein called p23 acts as a co-chaperone for heat-shock protein of 90 kDa (Hsp90) during its ATPase cycle. p23 proteins inhibit Hsp90 ATPase activity and show intrinsic chaperone ...The small acidic protein called p23 acts as a co-chaperone for heat-shock protein of 90 kDa (Hsp90) during its ATPase cycle. p23 proteins inhibit Hsp90 ATPase activity and show intrinsic chaperone activity. A search for p23 in protozoa, especially trypanosomatids, led us to identify two putative proteins in the Leishmania braziliensis genome that share approximately 30% identity with each other and with the human p23. To understand the presence of two p23 isoforms in trypanosomatids, we obtained the recombinant p23 proteins of L. braziliensis (named Lbp23A and Lbp23B) and performed structural and functional studies. The recombinant proteins share similar solution structures; however, temperature- and chemical-induced unfolding experiments showed that Lbp23A is more stable than Lbp23B, suggesting that they may have different functions. Lbp23B prevented the temperature-induced aggregation of malic dehydrogenase more efficiently than did Lbp23A, whereas the two proteins had equivalent efficiencies with respect to preventing the temperature-induced aggregation of luciferase. Both proteins interacted with L. braziliensis Hsp90 (LbHsp90) and inhibited its ATPase activity, although their efficiencies differed. In vivo identification studies suggested that both proteins are present in L. braziliensis cells grown under different conditions, although Lbp23B may undergo post-translation modifications. Interaction studies indicated that both Lbp23 proteins interact with LbHsp90. Taken together, our data suggest that the two protozoa p23 isoforms act similarly when regulating Hsp90 function. However, they also have some differences, indicating that the L. braziliensis Hsp90 machine has features providing an opportunity for novel forms of selective inhibition of protozoan Hsp90.
External linksFEBS J / PubMed:25369258
MethodsSAS (X-ray synchrotron)
Structure data

SASDC85:
Leishmania braziliensis p23B (Leishmania braziliensis p23 isoform B, Lbp23B)
Method: SAXS/SANS

SASDCV5:
Leishmania braziliensis p23A (Uncharacterized protein, Lbp23A)
Method: SAXS/SANS

Source
  • Leishmania braziliensis (eukaryote)

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbjlvh1.pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more