[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleSeed amplification of MSA alpha-synuclein aggregates preserves the biological and structural properties of brain-derived aggregates.
Journal, issue, pagesNat Commun, Vol. 16, Issue 1, Page 11266, Year 2025
Publish dateDec 10, 2025
AuthorsFei Wang / Victor Banerjee / Carla Barria / Santiago Ramirez / Tyler Allison / Damian Gorski / Haley Evans / Quynh Nguyen / Danielle Harrison / Rabab Al-Lahham / Nicole De Gregorio Carbonell / Michelle Pinho / Sanne Kaalund / Jonas Folke / Susana Aznar / Luis Concha-Marambio / Mohd Ishtikhar / Venkata Kps Mallampalli / Sandra Pritzkow / Mohammad Shahnawaz / Matthew L Baker / Irina Serysheva / Claudio Soto /
PubMed AbstractParkinson's disease (PD), Dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), are characterized by the misfolding and aggregation of alpha-synuclein (αSyn). Compelling evidence ...Parkinson's disease (PD), Dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), are characterized by the misfolding and aggregation of alpha-synuclein (αSyn). Compelling evidence showed that αSyn aggregates exist as distinct conformational strains in different synucleinopathies. Recently, we reported that the αSyn Seed Amplification Assay (αSyn-SAA) can amplify and distinguish αSyn strains from PD and MSA. In this study, we investigate whether MSA-seeded, SAA-amplified αSyn fibrils retain the biological and structural properties of the αSyn seeds present in MSA brains. We study the biological activities of both brain-derived and SAA-amplified αSyn aggregates using an αSyn "biosensor" cell model and a synucleinopathy transmission mouse model. Our in vitro and in vivo findings reveal that the SAA-amplified αSyn fibrils preserve the biological properties of the brain-derived MSA strain. Detailed analyses of the in vivo studies demonstrate that both brain-derived and SAA-generated αSyn aggregates induce a similar disease, with comparable incubation periods, neuropathological damages and clinical manifestations. High-resolution cryo-EM analysis of SAA-amplified αSyn fibrils demonstrates that their conformation at the protofilament level closely resembles one of the αSyn filaments previously identified in MSA patient brains. Our findings suggest that SAA can amplify disease-specific misfolded αSyn conformation while preserving its main biological properties.
External linksNat Commun / PubMed:41372188 / PubMed Central
MethodsEM (helical sym.)
Resolution3.9 Å
Structure data

EMDB-42350, PDB-8uka:
Structure of amplified aSyn filament by using seed amplification assay (SAA) from MSA patient CSF.
Method: EM (helical sym.) / Resolution: 3.9 Å

Source
  • homo sapiens (human)
KeywordsPROTEIN FIBRIL / aSyn filament / Seed amplification assay / amyloid filament / Prion strain / Prion like propagation

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more