+Search query
-Structure paper
| Title | Parametrically guided design of beta barrels and transmembrane nanopores using deep learning. |
|---|---|
| Journal, issue, pages | Proc. Natl. Acad. Sci. USA, Vol. 122, Page e2425459122-e2425459122, Year 2025 |
| Publish date | Aug 27, 2025 (structure data deposition date) |
Authors | Kim, D.E. / Watson, J.L. / Juergens, D. / Majumder, S. / Sonigra, R. / Gerben, S.R. / Kang, A. / Bera, A.K. / Li, X. / Baker, D. |
External links | Proc. Natl. Acad. Sci. USA / PubMed:40953261 |
| Methods | X-ray diffraction |
| Resolution | 2.03 Å |
| Structure data | ![]() PDB-9xzt: |
| Chemicals | ![]() ChemComp-PG6: ![]() ChemComp-SO4: ![]() ChemComp-PG4: ![]() ChemComp-HOH: |
| Source |
|
Keywords | DE NOVO PROTEIN / de novo design / parametric / beta-barrel / sequence-structure relation ship / machine learning / nanopore |
Movie
Controller
Structure viewers
About Yorodumi Papers



Authors
External links




Keywords