[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleDeciphering the RNA recognition by Musashi-1 to design protein and RNA variants for in vitro and in vivo applications.
Journal, issue, pagesNucleic Acids Res, Vol. 53, Issue 15, Year 2025
Publish dateAug 11, 2025
AuthorsAnna Pérez-Ràfols / Guillermo Pérez-Ropero / Linda Cerofolini / Luca Sperotto / Joel Roca-Martínez / R Anahí Higuera-Rodríguez / Pasquale Russomanno / Wolfgang Kaiser / Wim Vranken / U Helena Danielson / Alessandro Provenzani / Tommaso Martelli / Michael Sattler / Jos Buijs / Marco Fragai /
PubMed AbstractThe Human Musashi-1 (MSI-1) is an RNA-binding protein that recognizes (G/A)U1-3AGU and UAG sequences in diverse RNAs through two RNA Recognition Motif (RRM) domains and regulates the fate of target ...The Human Musashi-1 (MSI-1) is an RNA-binding protein that recognizes (G/A)U1-3AGU and UAG sequences in diverse RNAs through two RNA Recognition Motif (RRM) domains and regulates the fate of target RNA. Here, we have combined structural biology and computational approaches to analyse the binding of the RRM domains of human MSI-1 with single-stranded and structured RNA ligands. We have used our recently developed computational tool RRMScorer to design a set of substitutions in the MSI-1 protein and the investigated RNA strands to modulate the binding affinity and selectivity. The in silico predictions of the designed protein-RNA interactions are assessed by nuclear magnetic resonance and surface plasmon resonance. These experiments have also been used to study the competition of the two RRM domains of MSI-1 for the same binding site within linear and harpin RNA. Our experimental results shed light on MSI-RNA interactions, thus opening the way for the development of new biomolecules for in vitro and in vivo studies and downstream applications.
External linksNucleic Acids Res / PubMed:40795964 / PubMed Central
MethodsEM (single particle)
Resolution3.31 - 4.12 Å
Structure data

EMDB-52197, PDB-9hip:
MnmE-MnmG a2b2 complex
Method: EM (single particle) / Resolution: 3.31 Å

EMDB-52198, PDB-9hiq:
MnmE-MnmG a4b2 complex
Method: EM (single particle) / Resolution: 4.02 Å

EMDB-52199: Focused map of the MnmG dimer within the MnmE-MnmG a4b2 complex
PDB-9hir: MnmG dimer within the MnmE-MnmG a4b2 complex
Method: EM (single particle) / Resolution: 4.12 Å

Chemicals

ChemComp-GNP:
PHOSPHOAMINOPHOSPHONIC ACID-GUANYLATE ESTER / GppNHp, GMPPNP, energy-carrying molecule analogue*YM

ChemComp-FAD:
FLAVIN-ADENINE DINUCLEOTIDE / FAD*YM

Source
  • escherichia coli (E. coli)
KeywordsRNA BINDING PROTEIN / tRNA modification / FAD binding protein / folate binding protein / G protein activated by dimerization

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more