[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleImproving CryoEM maps of symmetry-mismatched macromolecular assemblies: A case study on the flagellar motor.
Journal, issue, pagesJ Struct Biol, Vol. 217, Issue 2, Page 108184, Year 2025
Publish dateMar 5, 2025
AuthorsPrashant K Singh / T M Iverson /
PubMed AbstractAdvances in cryo-electron microscopy instrumentation and sample preparation have significantly improved the ability to collect quality data for biomolecular structures. However, achieving resolutions ...Advances in cryo-electron microscopy instrumentation and sample preparation have significantly improved the ability to collect quality data for biomolecular structures. However, achieving resolutions consistent with data quality remains challenging in structures with symmetry mismatches. As a case study, the bacterial flagellar motor is a large complex essential for bacterial chemotaxis and virulence. This motor contains a smaller membrane-supramembrane ring (MS-ring) and a larger cytoplasmic ring (C-ring). These two features have a 33:34 symmetry mismatch when expressed in E. coli. Because close symmetry mismatches are the most difficult to deconvolute, this makes the flagellar motor an excellent model system to evaluate refinement strategies for symmetry mismatch. We compared the performance of masked refinement, local refinement, and particle subtracted refinement on the same data. We found that particle subtraction prior to refinement was critical for approaching the smaller MS-ring. Additional processing resulted in final resolutions of 3.1 Å for the MS-ring and 3.0 Å for the C-ring, which improves the resolution of the MS-ring by 0.3 Å and the resolution of the C-ring by 1.0 Å as compared to past work. Although particle subtraction is fairly well-established, it is rarely applied to problems of symmetry mismatch, making this case study a valuable demonstration of its utility in this context.
External linksJ Struct Biol / PubMed:40054642
MethodsEM (single particle)
Resolution3.0 - 4.15 Å
Structure data

EMDB-48870: C-ring Consensus map, 34-mer CCW flagellar switch complex - FliF, FliG, FliM, and FliN from Salmonella
Method: EM (single particle) / Resolution: 4.15 Å

EMDB-48871, PDB-9n49:
C-ring - single subunit of the 34-mer CCW flagellar switch complex - FliF, FliG, FliM, and FliN from Salmonella
Method: EM (single particle) / Resolution: 3.0 Å

EMDB-48916, PDB-9n4z:
CCW Flagellar Switch Complex - FliF, FliG, FliM, and FliN forming 34-mer C-ring from Salmonella
Method: EM (single particle) / Resolution: 3.0 Å

Source
  • salmonella enterica subsp. enterica serovar typhimurium (bacteria)
KeywordsMOTOR PROTEIN / C-ring / Bacterial / Chemotaxis / C ring / Flagellar Motor complex / switch complex / FliG / FliM / FliN / FliF

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more