[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleTemplate-assisted covalent modification of DCAF16 underlies activity of BRD4 molecular glue degraders.
Journal, issue, pagesbioRxiv, Year 2023
Publish dateFeb 15, 2023
AuthorsYen-Der Li / Michelle W Ma / Muhammad Murtaza Hassan / Moritz Hunkeler / Mingxing Teng / Kedar Puvar / Ryan Lumpkin / Brittany Sandoval / Cyrus Y Jin / Scott B Ficarro / Michelle Y Wang / Shawn Xu / Brian J Groendyke / Logan H Sigua / Isidoro Tavares / Charles Zou / Jonathan M Tsai / Paul M C Park / Hojong Yoon / Felix C Majewski / Jarrod A Marto / Jun Qi / Radosław P Nowak / Katherine A Donovan / Mikołaj Słabicki / Nathanael S Gray / Eric S Fischer / Benjamin L Ebert /
PubMed AbstractSmall molecules that induce protein-protein interactions to exert proximity-driven pharmacology such as targeted protein degradation are a powerful class of therapeutics. Molecular glues are of ...Small molecules that induce protein-protein interactions to exert proximity-driven pharmacology such as targeted protein degradation are a powerful class of therapeutics. Molecular glues are of particular interest given their favorable size and chemical properties and represent the only clinically approved degrader drugs. The discovery and development of molecular glues for novel targets, however, remains challenging. Covalent strategies could in principle facilitate molecular glue discovery by stabilizing the neo-protein interfaces. Here, we present structural and mechanistic studies that define a -labeling covalent molecular glue mechanism, which we term "template-assisted covalent modification". We found that a novel series of BRD4 molecular glue degraders act by recruiting the CUL4 ligase to the second bromodomain of BRD4 (BRD4). BRD4, in complex with DCAF16, serves as a structural template to facilitate covalent modification of DCAF16, which stabilizes the BRD4-degrader-DCAF16 ternary complex formation and facilitates BRD4 degradation. A 2.2 Å cryo-electron microscopy structure of the ternary complex demonstrates that DCAF16 and BRD4 have pre-existing structural complementarity which optimally orients the reactive moiety of the degrader for DCAF16 covalent modification. Systematic mutagenesis of both DCAF16 and BRD4 revealed that the loop conformation around BRD4, rather than specific side chains, is critical for stable interaction with DCAF16 and BD2 selectivity. Together our work establishes "template-assisted covalent modification" as a mechanism for covalent molecular glues, which opens a new path to proximity driven pharmacology.
External linksbioRxiv / PubMed:36824856 / PubMed Central
MethodsEM (single particle)
Resolution2.2 Å
Structure data

EMDB-29714, PDB-8g46:
Cryo-EM structure of DDB1deltaB-DDA1-DCAF16-BRD4(BD2)-MMH2
Method: EM (single particle) / Resolution: 2.2 Å

Chemicals

ChemComp-ZN:
Unknown entry

ChemComp-YK3:
tert-butyl [(6S,10P)-4-{4-[(ethanesulfonyl)amino]phenyl}-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl]acetate

ChemComp-HOH:
WATER

Source
  • homo sapiens (human)
KeywordsLIGASE / E3 ligase / ubiquitin / degrader / targeted protein degradation

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more