[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleModulating co-translational protein folding by rational design and ribosome engineering.
Journal, issue, pagesNat Commun, Vol. 13, Issue 1, Page 4243, Year 2022
Publish dateJul 22, 2022
AuthorsMinkoo Ahn / Tomasz Włodarski / Alkistis Mitropoulou / Sammy H S Chan / Haneesh Sidhu / Elena Plessa / Thomas A Becker / Nediljko Budisa / Christopher A Waudby / Roland Beckmann / Anaïs M E Cassaignau / Lisa D Cabrita / John Christodoulou /
PubMed AbstractCo-translational folding is a fundamental process for the efficient biosynthesis of nascent polypeptides that emerge through the ribosome exit tunnel. To understand how this process is modulated by ...Co-translational folding is a fundamental process for the efficient biosynthesis of nascent polypeptides that emerge through the ribosome exit tunnel. To understand how this process is modulated by the shape and surface of the narrow tunnel, we have rationally engineered three exit tunnel protein loops (uL22, uL23 and uL24) of the 70S ribosome by CRISPR/Cas9 gene editing, and studied the co-translational folding of an immunoglobulin-like filamin domain (FLN5). Our thermodynamics measurements employing F/N/methyl-TROSY NMR spectroscopy together with cryo-EM and molecular dynamics simulations reveal how the variations in the lengths of the loops present across species exert their distinct effects on the free energy of FLN5 folding. A concerted interplay of the uL23 and uL24 loops is sufficient to alter co-translational folding energetics, which we highlight by the opposite folding outcomes resulting from their extensions. These subtle modulations occur through a combination of the steric effects relating to the shape of the tunnel, the dynamic interactions between the ribosome surface and the unfolded nascent chain, and its altered exit pathway within the vestibule. These results illustrate the role of the exit tunnel structure in co-translational folding, and provide principles for how to remodel it to elicit a desired folding outcome.
External linksNat Commun / PubMed:35869078 / PubMed Central
MethodsEM (single particle)
Resolution2.2 - 2.75 Å
Structure data

EMDB-14454, PDB-7z20:
70S E. coli ribosome with an extended uL23 loop from Candidatus marinimicrobia and a stalled filamin domain 5 nascent chain
Method: EM (single particle) / Resolution: 2.29 Å

EMDB-14846, PDB-7zod:
70S E. coli ribosome with an extended uL23 loop from Candidatus marinimicrobia
Method: EM (single particle) / Resolution: 2.56 Å

EMDB-14850, PDB-7zp8:
70S E. coli ribosome with a stalled filamin domain 5 nascent chain
Method: EM (single particle) / Resolution: 2.2 Å

EMDB-14864, PDB-7zq5:
70S E. coli ribosome with truncated uL23 and uL24 loops
Method: EM (single particle) / Resolution: 2.7 Å

EMDB-14865, PDB-7zq6:
70S E. coli ribosome with truncated uL23 and uL24 loops and a stalled filamin domain 5 nascent chain
Method: EM (single particle) / Resolution: 2.75 Å

Source
  • Escherichia coli 'BL21-Gold(DE3)pLysS AG' (bacteria)
  • escherichia coli (E. coli)
  • dictyostelium discoideum (eukaryote)
KeywordsRIBOSOME / exit tunnel / structural modification / ribosomal protein / folded nascent chain

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more