[English] 日本語
Yorodumi
- EMDB-7110: Cryo-EM structure of Seneca Valley Virus -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-7110
TitleCryo-EM structure of Seneca Valley Virus
Map dataSeneca Valley Virus
SampleSeneca Valley Virus != Senecavirus

Seneca Valley Virus

  • Virus: Senecavirus
Biological speciesSenecavirus
Methodsingle particle reconstruction / cryo EM / Resolution: 3.8 Å
AuthorsStraus M / Jayawardena N / Bostina M
CitationJournal: J Virol / Year: 2018
Title: Cryo-Electron Microscopy Structure of Seneca Valley Virus Procapsid.
Authors: Mike Strauss / Nadishka Jayawardena / Eileen Sun / Richard A Easingwood / Laura N Burga / Mihnea Bostina /
Abstract: Seneca Valley virus (SVV), like some other members of the , forms naturally occurring empty capsids, known as procapsids. Procapsids have the same antigenicity as full virions, so they present an ...Seneca Valley virus (SVV), like some other members of the , forms naturally occurring empty capsids, known as procapsids. Procapsids have the same antigenicity as full virions, so they present an interesting possibility for the formation of stable virus-like particles. Interestingly, although SVV is a livestock pathogen, it has also been found to preferentially infect tumor cells and is being explored for use as a therapeutic agent in the treatment of small-cell lung cancers. Here we used cryo-electron microscopy to investigate the procapsid structure and describe the transition of capsid protein VP0 to the cleaved forms of VP4 and VP2. We show that the SVV receptor binds the procapsid, as evidence of its native antigenicity. In comparing the procapsid structure to that of the full virion, we also show that a cage of RNA serves to stabilize the inside surface of the virus, thereby making it more acid stable. Viruses are extensively studied to help us understand infection and disease. One of the by-products of some virus infections are the naturally occurring empty virus capsids (containing no genome), termed procapsids, whose function remains unclear. Here we investigate the structure and formation of the procapsids of Seneca Valley virus, to better understand how they form, what causes them to form, how they behave, and how we can make use of them. One potential benefit of this work is the modification of the procapsid to develop it for targeted delivery of therapeutics or to make a stable vaccine against SVV, which could be of great interest to the agricultural industry.
History
DepositionNov 8, 2017-
Header (metadata) releaseDec 20, 2017-
Map releaseDec 20, 2017-
UpdateApr 3, 2019-
Current statusApr 3, 2019Processing site: RCSB / Status: Released

-
Structure visualization

Movie
  • Surface view with section colored by density value
  • Surface level: 0.016
  • Imaged by UCSF Chimera
  • Download
  • Surface view colored by radius
  • Surface level: 0.016
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerEM map:
SurfViewMolmilJmol/JSmol
Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_7110.map.gz / Format: CCP4 / Size: 1000 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
AnnotationSeneca Valley Virus
Projections & slices

Image control

Size
Brightness
Contrast
Others
AxesZ (Sec.)Y (Row.)X (Col.)
0.82 Å/pix.
x 640 pix.
= 524.8 Å
0.82 Å/pix.
x 640 pix.
= 524.8 Å
0.82 Å/pix.
x 640 pix.
= 524.8 Å

Surface

Projections

Slices (1/3)

Slices (1/2)

Slices (2/3)

Images are generated by Spider.

Voxel sizeX=Y=Z: 0.82 Å
Density
Contour LevelBy EMDB: 0.016 / Movie #1: 0.016
Minimum - Maximum-0.037818767 - 0.06361229
Average (Standard dev.)-0.00077128806 (±0.004155754)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions640640640
Spacing640640640
CellA=B=C: 524.8 Å
α=β=γ: 90.0 °

CCP4 map header:

modeImage stored as Reals
Å/pix. X/Y/Z0.820.820.82
M x/y/z640640640
origin x/y/z0.0000.0000.000
length x/y/z524.800524.800524.800
α/β/γ90.00090.00090.000
start NX/NY/NZ-383-383-383
NX/NY/NZ768768768
MAP C/R/S123
start NC/NR/NS000
NC/NR/NS640640640
D min/max/mean-0.0380.064-0.001

-
Supplemental data

-
Sample components

-
Entire : Seneca Valley Virus

EntireName: Seneca Valley Virus
Components
  • Virus: Senecavirus

-
Supramolecule #1: Senecavirus

SupramoleculeName: Senecavirus / type: virus / ID: 1 / Parent: 0 / NCBI-ID: 586425 / Sci species name: Senecavirus / Virus type: VIRION / Virus isolate: STRAIN / Virus enveloped: No / Virus empty: No

-
Experimental details

-
Structure determination

Methodcryo EM
Processingsingle particle reconstruction
Aggregation stateparticle

-
Sample preparation

BufferpH: 7
VitrificationCryogen name: ETHANE

-
Electron microscopy

MicroscopeFEI POLARA 300
Image recordingFilm or detector model: GATAN K2 SUMMIT (4k x 4k) / Average electron dose: 30.0 e/Å2
Electron beamAcceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
Electron opticsIllumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD
Experimental equipment
Model: Tecnai Polara / Image courtesy: FEI Company

-
Image processing

Final reconstructionResolution.type: BY AUTHOR / Resolution: 3.8 Å / Resolution method: FSC 0.143 CUT-OFF / Number images used: 20949
Initial angle assignmentType: ANGULAR RECONSTITUTION
Final angle assignmentType: PROJECTION MATCHING

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more