

Full wwPDB X-ray Structure Validation Report (i)

Jun 12, 2024 – 05:49 AM EDT

ID	:	6NN7
itle	:	The structure of human liver pyruvate kinase, hLPYK-GGG
ors	:	McFarlane, J.S.; Ronnebaum, T.A.; Meneely, K.M.; Fenton, A.W.; Lamb, A.L.
on	:	2019-01-14
ion	:	2.32 Å(reported)
i	ID tle ors on ion	ID : tle : ors : on : ion :

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36.2
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.32 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motrie	Whole archive	Similar resolution
	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	130704	5974(2.34-2.30)
Clashscore	141614	6604 (2.34-2.30)
Ramachandran outliers	138981	6523 (2.34-2.30)
Sidechain outliers	138945	6523 (2.34-2.30)
RSRZ outliers	127900	5855 (2.34-2.30)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	۸	549	6%		
1	A	342	85%	10%	5%
			4%		
1	В	542	70% 6%	24%	
			% •		
1	С	542	84%	11%	5%
			10%		
1	D	542	75% 13%	• 1	.2%
			% •		
1	Е	542	85%	10%	·

Mol	Chain	Length	Quality of ch	ain		
_	Б	F 10	10%			
	F,	542	59%	15%	•	25%
			11%			
1	G	542	74%			16% • 8%
			7%			
1	Н	542	59%	13%	•	27%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
2	EDO	С	603	-	-	Х	-
2	EDO	С	605	-	-	Х	-
4	FLC	С	601	-	Х	-	-

6NN7

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 58243 atoms, of which 29236 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues			Atom	s			ZeroOcc	AltConf	Trace
1	Δ	516	Total	С	Η	Ν	0	S	0	0	0
	A	510	7927	2469	4006	706	728	18	0	0	0
1	В	414	Total	С	Н	Ν	0	S	0	0	0
1	D	414	6369	1980	3212	574	585	18	0	0	0
1	С	514	Total	С	Η	Ν	0	S	0	0	0
1	U	514	7851	2440	3964	705	724	18	0	0	0
1	F	518	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
		010	7919	2463	3998	710	730	18		0	0
1	а	470	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
	D	415	7361	2295	3715	658	675	18	0	0	0
1	F	406	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0
1	Ľ	400	6256	1943	3158	562	575	18	0	0	0
1	С	406	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
1	G	490	7660	2388	3869	685	700	18	0	0	0
1	н	308	Total	C	H	N	0	S	0	0	0
	11	J 90	6118	1895	3092	552	561	18		U	

• Molecule 1 is a protein called Pyruvate kinase PKLR.

There are 32 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	1	MET	-	expression tag	UNP P30613
А	2	GLU	-	expression tag	UNP P30613
А	?	-	PRO	deletion	UNP P30613
А	531	GLY	SER	engineered mutation	UNP P30613
В	1	MET	-	expression tag	UNP P30613
В	2	GLU	-	expression tag	UNP P30613
В	?	-	PRO	deletion	UNP P30613
В	531	GLY	SER	engineered mutation	UNP P30613
С	1	MET	-	expression tag	UNP P30613
С	2	GLU	-	expression tag	UNP P30613
С	?	-	PRO	deletion	UNP P30613
С	531	GLY	SER	engineered mutation	UNP P30613
E	1	MET	-	expression tag	UNP P30613

Chain	Residue	Modelled	Actual	Comment	Reference
Е	2	GLU	-	expression tag	UNP P30613
Е	?	-	PRO	deletion	UNP P30613
Е	531	GLY	SER	engineered mutation	UNP P30613
D	1	MET	-	expression tag	UNP P30613
D	2	GLU	-	expression tag	UNP P30613
D	?	-	PRO	deletion	UNP P30613
D	531	GLY	SER	engineered mutation	UNP P30613
F	1	MET	-	expression tag	UNP P30613
F	2	GLU	-	expression tag	UNP P30613
F	?	-	PRO	deletion	UNP P30613
F	531	GLY	SER	engineered mutation	UNP P30613
G	1	MET	-	expression tag	UNP P30613
G	2	GLU	-	expression tag	UNP P30613
G	?	-	PRO	deletion	UNP P30613
G	531	GLY	SER	engineered mutation	UNP P30613
Н	1	MET	-	expression tag	UNP P30613
Н	2	GLU	-	expression tag	UNP P30613
Н	?	-	PRO	deletion	UNP P30613
Н	531	GLY	SER	engineered mutation	UNP P30613

• Molecule 2 is 1,2-ETHANEDIOL (three-letter code: EDO) (formula: $C_2H_6O_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	Total C H O 10 2 6 2	0	0
2	А	1	Total C H O 10 2 6 2	0	0

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf
0	D	1	Total	С	Н	0	0	0
	D	1	10	2	6	2	0	0
0	D	1	Total	С	Η	0	0	0
	D	1	10	2	6	2	0	0
0	С	1	Total	С	Η	0	0	0
	U	1	10	2	6	2	0	0
2	С	1	Total	С	Η	0	0	0
	U	1	10	2	6	2	0	0
2	С	1	Total	С	Η	0	0	0
	U	1	10	2	6	2	0	0
2	С	1	Total	С	Η	Ο	0	0
	0	T	10	2	6	2	0	0
2	С	1	Total	С	Η	Ο	0	0
		1	10	2	6	2	0	0
2	С	1	Total	С	Η	0	0	0
		1	10	2	6	2	0	0
2	С	1	Total	С	Η	0	0	0
		1	10	2	6	2	Ŭ	0
2	E	1	Total	С	Η	Ο	0	0
		1	10	2	6	2	Ŭ	•
2	E	1	Total	С	Η	Ο	0	0
		1	10	2	6	2	Ŭ	•
2	D	1	Total	С	Η	Ο	0	0
	D	1	10	2	6	2	Ŭ	•
2	F	1	Total	С	Η	Ο	0	0
	-	1	10	2	6	2	Ŭ	•
2	G	1	Total	С	Η	0	0	0
		*	10	2	6	2		
2	G	1	Total	С	Η	Ο	0	0
	G	1	10	2	6	2		V

• Molecule 3 is GLYCEROL (three-letter code: GOL) (formula: $C_3H_8O_3$).

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf
2	Δ	1	Total	С	Η	0	0	0
3	A	1	14	3	8	3	0	0
2	٨	1	Total	С	Н	0	0	0
3	A	L	14	3	8	3	0	0
9	D	1	Total	С	Н	0	0	0
3	D	L	13	3	7	3	0	0
2	Р	1	Total	С	Η	0	0	0
່ <u>ບ</u>	D	L	14	3	8	3	0	0
3	С	1	Total	С	Η	0	0	0
5	U	T	14	3	8	3	0	0
2	F	1	Total	С	Н	0	0	0
5	Ľ	T	14	3	8	3	0	0
2	F	1	Total	С	Н	0	0	0
5	Ľ	T	14	3	8	3	0	0
3	F	1	Total	С	Н	0	0	0
5	Ľ	T	13	3	7	3	0	0
3	л	1	Total	С	Н	0	0	0
5	D	1	14	3	8	3	0	0
2	F	1	Total	С	Н	0	0	0
5	Ľ	T	14	3	8	3	0	0
3	F	1	Total	С	Η	0	0	0
5	T,	T	14	3	8	3	0	0
3	C	1	Total	С	Η	0	0	0
5	G	T	14	3	8	3	0	0
3	н	1	Total	С	Η	0	0	0
	11	L	14	3	8	3		U
3	н	1	Total	С	Η	0	0	0
0	11	L 1	14	3	8	3	U	U

• Molecule 4 is CITRATE ANION (three-letter code: FLC) (formula: $C_6H_5O_7$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	
4	С	1	Total	С	Η	0	0	0	
	U	Ĩ	18	6	5	7	0	0	
4	Л	1	Total	\mathbf{C}	Η	Ο	0	0	
4	D	L	18	6	5	7	0	0	

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	87	Total O 87 87	0	0
5	В	63	Total O 63 63	0	0
5	С	67	Total O 67 67	0	0
5	Е	64	$\begin{array}{cc} \text{Total} & \text{O} \\ 64 & 64 \end{array}$	0	0
5	D	73	Total O 73 73	0	0
5	F	15	$\begin{array}{cc} \text{Total} & \text{O} \\ 15 & 15 \end{array}$	0	0
5	G	11	Total O 11 11	0	0
5	Н	2	Total O 2 2	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Pyruvate kinase PKLR

 \bullet Molecule 1: Pyruvate kinase PKLR

TRP G567 C370 C336 C370 C336 C370 C336 C320 C370 C336 C370 C336 C370 C336 C370 C336 C370 C336 C370 C336 C371 C371

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	79.36Å 106.20Å 151.71Å	Depositor
a, b, c, α , β , γ	76.44° 80.06° 71.37°	Depositor
$\mathbf{B}_{\mathrm{ascolution}}(\hat{\boldsymbol{\lambda}})$	39.06 - 2.32	Depositor
Resolution (A)	39.06 - 2.32	EDS
% Data completeness	89.4 (39.06-2.32)	Depositor
(in resolution range)	89.4 (39.06-2.32)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.27 (at 2.31 \text{\AA})$	Xtriage
Refinement program	PHENIX (1.13_2998: ???)	Depositor
P. P.	0.191 , 0.251	Depositor
n, n_{free}	0.191 , 0.252	DCC
R_{free} test set	2000 reflections $(1.14%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	38.5	Xtriage
Anisotropy	0.438	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.41 , 53.0	EDS
L-test for twinning ²	$ < L >=0.50, < L^2>=0.33$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.95	EDS
Total number of atoms	58243	wwPDB-VP
Average B, all atoms $(Å^2)$	49.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.79% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FLC, GOL, EDO

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.64	0/3981	0.76	0/5392	
1	В	0.63	0/3206	0.78	0/4333	
1	С	0.62	0/3949	0.76	3/5349~(0.1%)	
1	D	0.60	0/3699	0.76	2/4998~(0.0%)	
1	Е	0.61	0/3985	0.74	1/5399~(0.0%)	
1	F	0.56	0/3143	0.73	0/4245	
1	G	0.54	0/3847	0.70	0/5203	
1	Н	0.49	0/3068	0.67	1/4143~(0.0%)	
All	All	0.59	0/28878	0.74	7/39062~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	С	0	1
1	G	0	1
All	All	0	2

There are no bond length outliers.

All (7) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\mathbf{Observed}(^{o})$	$\mathbf{Ideal}(^{o})$
1	С	418	ARG	NE-CZ-NH2	-6.88	116.86	120.30
1	D	267	ARG	NE-CZ-NH1	6.17	123.39	120.30
1	С	418	ARG	NE-CZ-NH1	5.94	123.27	120.30
1	С	306	ARG	NE-CZ-NH1	5.91	123.25	120.30
1	Н	475	VAL	CB-CA-C	-5.27	101.39	111.40
1	Е	172	ASP	CB-CG-OD1	5.02	122.82	118.30

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	D	55	ARG	NE-CZ-NH1	5.01	122.81	120.30

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Group
1	С	112	GLY	Peptide
1	G	254	ALA	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3921	4006	4004	36	0
1	В	3157	3212	3212	28	0
1	С	3887	3964	3963	51	0
1	D	3646	3715	3708	44	0
1	Е	3921	3998	3997	36	0
1	F	3098	3158	3156	66	0
1	G	3791	3869	3868	67	0
1	Н	3026	3092	3091	49	0
2	А	8	12	12	2	0
2	В	8	12	12	0	0
2	С	28	42	42	11	0
2	D	4	6	6	3	0
2	Е	8	12	12	2	0
2	F	4	6	6	2	0
2	G	8	12	12	0	0
3	А	12	16	16	0	0
3	В	12	15	16	1	0
3	С	6	8	8	0	0
3	D	6	8	8	0	0
3	E	18	23	24	0	0
3	F	12	16	16	1	0
3	G	6	8	8	1	0
3	Н	12	16	16	1	0
4	С	13	5	5	1	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
4	D	13	5	5	2	0
5	А	87	0	0	1	0
5	В	63	0	0	1	0
5	С	67	0	0	4	0
5	D	73	0	0	1	0
5	Ε	64	0	0	1	0
5	F	15	0	0	0	0
5	G	11	0	0	0	0
5	Н	2	0	0	0	0
All	All	29007	29236	29223	355	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (355) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:236:GLN:OE1	1:B:239:ARG:NH2	1.98	0.96
1:F:337:VAL:HG22	1:F:370:CYS:HB2	1.52	0.90
1:G:527:TRP:HB2	1:G:536:ILE:HD11	1.57	0.87
1:H:446:THR:HG22	3:H:602:GOL:H31	1.55	0.86
1:F:419:ASP:OD2	1:F:448:ARG:NH2	2.14	0.81
1:D:144:VAL:HG21	1:D:166:ALA:HB2	1.63	0.79
1:D:156:VAL:HG12	1:D:171:VAL:HG22	1.65	0.77
1:G:475:VAL:HG11	1:G:481:VAL:HG11	1.66	0.77
1:G:475:VAL:CG1	1:G:481:VAL:HG11	2.14	0.76
1:H:444:THR:HG22	1:H:447:GLY:H	1.50	0.75
1:G:471:ALA:O	1:G:475:VAL:HG23	1.86	0.75
1:D:263:VAL:HG21	1:D:298:VAL:HG23	1.68	0.75
1:C:512:ARG:HH11	1:C:512:ARG:HB3	1.52	0.74
1:D:56:SER:HB2	1:D:480:GLY:HA2	1.69	0.73
1:E:233:LEU:HD21	1:E:266:VAL:HG22	1.70	0.72
1:C:122:ILE:HD12	2:C:603:EDO:H11	1.69	0.72
1:G:255:SER:O	1:G:284:GLU:OE1	2.08	0.72
1:D:260:ALA:O	1:D:263:VAL:HG22	1.91	0.71
1:B:56:SER:HB2	1:B:480:GLY:HA2	1.72	0.71
1:A:419:ASP:OD2	1:A:448:ARG:NH2	2.23	0.71
1:C:538:ARG:NH1	1:C:540:LEU:HD21	2.05	0.70
1:B:527:TRP:HB3	1:B:536:ILE:HD11	1.73	0.70
1:E:527:TRP:HE3	1:E:536:ILE:HD11	1.55	0.70
1:H:444:THR:CG2	1:H:447:GLY:H	2.07	0.67

	, and pagetti	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:165:ASN:HB3	2:E:601:EDO:H11	1.77	0.67
1:D:263:VAL:HG21	1:D:298:VAL:CG2	2.24	0.66
1:B:419:ASP:OD2	1:B:448:ARG:NH2	2.21	0.65
1:F:475:VAL:CG2	1:F:481:VAL:HG11	2.27	0.65
1:F:475:VAL:HG22	1:F:481:VAL:HG11	1.79	0.65
1:H:73:LEU:HD13	1:H:103:VAL:HA	1.79	0.63
1:H:337:VAL:HG22	1:H:370:CYS:HB2	1.80	0.62
1:E:162:THR:HG22	1:E:162:THR:O	1.99	0.62
1:A:56:SER:HB2	1:A:480:GLY:HA2	1.82	0.62
1:D:527:TRP:HB2	1:D:536:ILE:HD11	1.80	0.62
1:H:331:LEU:HD21	1:H:413:ALA:HB1	1.80	0.62
1:E:165:ASN:CB	2:E:601:EDO:H11	2.30	0.62
1:C:510:LYS:NZ	1:C:543:SER:O	2.33	0.61
1:H:411:ARG:HD3	1:H:426:ILE:HD11	1.82	0.61
1:C:155:THR:HG22	1:C:157:ASP:H	1.64	0.61
1:B:521:VAL:CG1	1:B:542:ILE:HD11	2.30	0.61
1:C:418:ARG:NH2	5:C:706:HOH:O	2.33	0.61
1:E:115:LEU:HD23	1:E:508:SER:OG	2.01	0.61
1:G:56:SER:HB2	1:G:480:GLY:HA2	1.82	0.61
1:H:343:LEU:HD23	1:H:356:GLU:HB3	1.82	0.61
1:A:418:ARG:NH1	1:C:435:CYS:O	2.35	0.60
1:D:28:GLN:HG3	1:D:52:VAL:HG22	1.84	0.60
1:C:473:ARG:NE	2:C:603:EDO:H21	2.17	0.59
1:D:130:GLU:OE1	1:D:132:ARG:NH2	2.35	0.59
1:F:463:ILE:CG2	1:F:484:LEU:HD12	2.32	0.59
1:G:63:ILE:HD12	1:G:73:LEU:HD21	1.85	0.59
1:C:28:GLN:HG2	1:C:52:VAL:HG22	1.83	0.58
1:A:188:ILE:HB	1:A:193:ILE:HB	1.84	0.58
1:E:47:ILE:CD1	1:F:289:VAL:HG11	2.33	0.58
4:D:601:FLC:CAC	4:D:601:FLC:OG1	2.52	0.58
1:C:512:ARG:HB3	1:C:512:ARG:NH1	2.17	0.58
1:E:337:VAL:HG22	1:E:370:CYS:HB2	1.85	0.58
1:G:62:THR:OG1	1:G:85:ARG:NH1	2.36	0.58
1:H:490:PRO:HB3	1:H:497:ASP:OD1	2.04	0.58
1:G:396:GLU:OE2	1:H:317:LYS:NZ	2.33	0.57
1:C:28:GLN:CG	1:C:52:VAL:HG22	2.34	0.57
1:D:68:ARG:NH2	5:D:705:HOH:O	2.38	0.57
1:H:104:ARG:O	1:H:108:GLU:HG2	2.04	0.56
1:B:411:ARG:HG2	1:B:426:ILE:HD11	1.87	0.56
1:C:318:VAL:HG12	2:C:605:EDO:H21	1.86	0.56
1:A:148:LYS:HG3	1:A:149:GLY:N	2.20	0.56

	A L O	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:114:PRO:HG2	1:C:117:TYR:N	2.19	0.56	
1:G:35:ALA:HB1	1:G:40:GLU:HB3	1.87	0.56	
1:E:177:VAL:HA	1:E:205:LEU:HD21	1.87	0.56	
1:C:239:ARG:HD3	1:G:518:GLY:HA3	1.87	0.56	
1:F:243:PHE:CE1	1:F:247:HIS:CE1	2.94	0.56	
1:C:471:ALA:O	1:C:475:VAL:HG13	2.05	0.56	
1:F:486:TYR:CZ	1:F:488:GLU:HG3	2.41	0.56	
1:C:104:ARG:HH21	2:C:603:EDO:H22	1.71	0.56	
1:F:268:ALA:O	1:F:271:GLY:N	2.33	0.55	
1:F:426:ILE:HD12	1:F:456:TYR:CZ	2.40	0.55	
1:G:239:ARG:HB3	1:G:239:ARG:CZ	2.35	0.55	
1:G:106:ALA:O	1:G:109:SER:HB3	2.05	0.55	
1:H:411:ARG:HD2	1:H:411:ARG:O	2.05	0.55	
1:G:475:VAL:HG12	1:G:481:VAL:HG11	1.89	0.55	
1:A:451:GLN:OE1	2:A:602:EDO:H21	2.05	0.55	
1:G:72:ARG:O	1:G:75:GLU:N	2.39	0.55	
1:G:406:LEU:HD11	1:G:410:LEU:HD11	1.88	0.55	
1:H:64:GLY:O	1:H:68:ARG:HG3	2.06	0.55	
1:G:491:GLU:OE2	1:G:500:ARG:NH2	2.39	0.55	
1:B:26:GLN:N	1:B:30:LEU:HD23	2.21	0.55	
1:D:72:ARG:O	1:D:76:MET:HG2	2.07	0.54	
4:D:601:FLC:OA1	4:D:601:FLC:OHB	2.11	0.54	
1:C:339:ALA:O	1:C:340:THR:HB	2.08	0.53	
1:D:35:ALA:HB2	1:D:44:LEU:HD12	1.89	0.53	
1:D:69:SER:OG	2:D:602:EDO:C2	2.56	0.53	
1:F:442:VAL:HG13	1:F:464:ALA:HA	1.90	0.53	
1:G:110:PHE:O	1:G:111:ALA:CB	2.56	0.53	
1:F:446:THR:HG22	3:F:603:GOL:O1	2.08	0.53	
1:D:443:LEU:HG	1:D:525:THR:HG22	1.89	0.53	
1:D:69:SER:OG	2:D:602:EDO:H22	2.09	0.53	
1:G:367:GLY:O	1:G:457:ARG:NH2	2.41	0.52	
1:A:421:THR:HG1	1:A:533:TYR:HD1	1.57	0.52	
1:C:256:PHE:CZ	2:C:606:EDO:H12	2.43	0.52	
1:A:455:ARG:HG3	1:A:455:ARG:HH11	1.74	0.52	
1:F:70:VAL:O	1:F:74:LYS:HG3	2.08	0.52	
1:A:449:SER:OG	1:A:534:THR:HG21	2.10	0.52	
1:E:527:TRP:CE3	1:E:536:ILE:HD11	2.41	0.52	
1:E:155:THR:HG21	1:E:160:PHE:CD2	2.44	0.52	
1:D:55:ARG:HB2	1:D:395:ARG:HG3	1.91	0.52	
1:F:251:ILE:HG22	1:F:252:VAL:N	2.25	0.51	
1:C:319:PHE:HA	2:C:605:EDO:C2	2.40	0.51	

	to as pagem	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:512:ARG:NH1	1:C:514:PHE:CZ	2.78	0.51	
1:F:93:HIS:O	1:F:97:ALA:N	2.39	0.51	
1:G:253:PHE:HB3	1:G:282:LYS:HD2	1.92	0.51	
1:D:27:GLN:NE2	1:D:50:GLU:OE1	2.44	0.51	
1:A:337:VAL:HG22	1:A:370:CYS:HB2	1.93	0.51	
1:H:467:ARG:NH2	1:H:488:GLU:O	2.44	0.51	
1:G:152:VAL:CG1	1:G:169:VAL:HG23	2.40	0.51	
1:D:156:VAL:HG12	1:D:171:VAL:CG2	2.36	0.51	
1:A:517:VAL:HG12	1:A:543:SER:OG	2.10	0.51	
1:D:173:TYR:CD2	1:D:176:ILE:HG23	2.46	0.51	
1:F:405:GLN:O	1:F:409:GLU:HG3	2.11	0.51	
1:B:438:ALA:HB3	1:B:515:LEU:HD23	1.91	0.50	
1:G:110:PHE:O	1:G:111:ALA:HB2	2.11	0.50	
1:B:521:VAL:HG11	1:B:542:ILE:HD11	1.93	0.50	
1:C:47:ILE:HD13	1:D:289:VAL:HG11	1.93	0.50	
1:C:118:ARG:CZ	1:C:512:ARG:NH2	2.75	0.50	
1:G:445:THR:H	3:G:603:GOL:H12	1.77	0.50	
1:G:199:LYS:HB2	1:G:206:VAL:HG11	1.94	0.50	
1:E:416:LEU:HB2	1:G:16:LEU:HD11	1.93	0.50	
1:E:56:SER:HB2	1:E:480:GLY:HA2	1.94	0.50	
1:H:89:SER:HA	1:H:127:LYS:HG3	1.94	0.50	
1:A:527:TRP:HA	1:A:536:ILE:HD11	1.94	0.49	
1:F:462:VAL:HG11	1:F:481:VAL:HG22	1.93	0.49	
1:C:114:PRO:HD2	1:C:117:TYR:N	2.26	0.49	
1:G:234:SER:OG	1:G:237:ASP:N	2.36	0.49	
1:A:197:VAL:HA	1:A:207:THR:HG22	1.94	0.49	
1:C:75:GLU:HG3	1:C:384:VAL:HG11	1.94	0.49	
1:B:488:GLU:OE1	1:B:488:GLU:N	2.46	0.49	
1:B:56:SER:HB2	1:B:480:GLY:CA	2.42	0.49	
1:F:251:ILE:HD13	1:F:477:LEU:HD21	1.95	0.49	
1:F:462:VAL:HG13	1:F:462:VAL:O	2.12	0.49	
1:C:331:LEU:HD11	1:C:413:ALA:HB1	1.95	0.49	
1:G:199:LYS:HB2	1:G:206:VAL:CG1	2.43	0.49	
1:G:94:GLU:O	1:G:98:GLU:HG3	2.12	0.48	
1:D:133:THR:HA	1:D:170:TRP:O	2.13	0.48	
1:F:411:ARG:NH2	1:H:408:GLU:OE2	2.46	0.48	
1:B:521:VAL:HG13	1:B:542:ILE:HD11	1.93	0.48	
1:B:408:GLU:HG2	1:B:411:ARG:HH21	1.77	0.48	
1:F:462:VAL:CG1	1:F:481:VAL:HG22	2.44	0.48	
1:A:414:ALA:HB2	1:A:455:ARG:HH21	1.79	0.48	
1:B:494:TRP:CH2	1:B:526:GLY:O	2.66	0.48	

	i a pageini	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:D:93:HIS:NE2	1:D:240:ASP:OD1	2.36	0.48	
1:C:118:ARG:CZ	1:C:512:ARG:HH21	2.26	0.48	
1:D:114:PRO:HB3	1:D:487:ARG:NH1	2.29	0.48	
1:C:515:LEU:HD22	1:C:521:VAL:HG11	1.96	0.48	
1:F:63:ILE:HD12	1:F:73:LEU:HD21	1.96	0.48	
1:C:104:ARG:HH21	2:C:603:EDO:C2	2.27	0.47	
1:C:107:VAL:HG21	1:C:120:VAL:HB	1.95	0.47	
1:E:180:VAL:O	5:E:701:HOH:O	2.20	0.47	
1:F:474:GLN:O	1:F:477:LEU:HD12	2.13	0.47	
1:H:446:THR:HG23	1:H:448:ARG:H	1.78	0.47	
1:H:498:VAL:O	1:H:502:VAL:HG23	2.15	0.47	
1:G:284:GLU:OE2	1:G:308:ASP:HB2	2.14	0.47	
1:E:335:PRO:HB3	1:E:477:LEU:O	2.13	0.47	
1:F:446:THR:HG23	1:F:448:ARG:H	1.80	0.47	
1:H:452:LEU:O	1:H:455:ARG:HG2	2.14	0.47	
1:C:55:ARG:HB2	1:C:395:ARG:HG2	1.96	0.47	
1:G:89:SER:O	1:G:90:HIS:ND1	2.47	0.47	
1:G:130:GLU:OE1	1:G:132:ARG:NH1	2.47	0.47	
1:A:408:GLU:OE1	1:C:412:ARG:NH2	2.48	0.47	
1:B:463:ILE:HD11	1:B:514:PHE:HE1	1.80	0.47	
1:A:137:GLN:HG3	1:A:164:GLY:O	2.15	0.47	
1:H:331:LEU:HD21	1:H:413:ALA:CB	2.44	0.47	
1:C:470:GLN:NE2	5:C:707:HOH:O	2.39	0.47	
1:F:484:LEU:HD21	1:F:508:SER:OG	2.15	0.47	
1:F:307:GLY:CA	1:F:340:THR:HG21	2.44	0.46	
1:F:454:SER:OG	2:F:601:EDO:C1	2.64	0.46	
1:C:47:ILE:CD1	1:D:289:VAL:HG11	2.45	0.46	
1:E:527:TRP:HE3	1:E:536:ILE:CD1	2.27	0.46	
1:G:198:GLN:O	1:G:199:LYS:HG3	2.15	0.46	
1:G:267:ARG:NH2	1:G:279:ILE:HD12	2.31	0.46	
1:H:67:SER:O	1:H:73:LEU:HD21	2.15	0.46	
1:F:539:VAL:HG11	1:H:420:PRO:HB3	1.98	0.46	
1:G:307:GLY:CA	1:G:340:THR:HG21	2.44	0.46	
1:F:242:ARG:HA	1:F:245:VAL:HG12	1.97	0.46	
1:F:441:ILE:HG13	1:F:521:VAL:HG21	1.97	0.46	
1:F:454:SER:OG	2:F:601:EDO:H12	2.16	0.46	
1:H:411:ARG:HD3	1:H:426:ILE:CD1	2.44	0.46	
1:H:525:THR:C	1:H:534:THR:HG23	2.36	0.46	
1:A:23:ALA:O	1:A:27:GLN:HG3	2.15	0.46	
1:G:284:GLU:HG2	1:G:305:ALA:HB3	1.97	0.46	
1:E:486:TYR:CE2	1:E:488:GLU:HB2	2.51	0.46	

	A L O	Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
1:F:510:LYS:HA	1:F:515:LEU:O	2.16	0.46		
1:D:469:ALA:HA	1:D:485:LEU:HD13	1.98	0.46		
1:G:68:ARG:NH1	1:G:95:TYR:CZ	2.84	0.46		
1:F:430:GLU:HG2	1:H:430:GLU:HG3	1.98	0.45		
1:A:255:SER:HA	1:A:282:LYS:HD3	1.98	0.45		
1:E:407:PHE:O	1:E:411:ARG:HG2	2.16	0.45		
1:D:339:ALA:O	1:D:340:THR:HB	2.16	0.45		
1:F:439:ALA:O	1:F:521:VAL:HG23	2.15	0.45		
1:H:256:PHE:O	1:H:258:ARG:HG3	2.16	0.45		
1:C:493:ILE:CG2	1:C:496:ASP:OD2	2.65	0.45		
1:F:511:LEU:HD13	1:F:511:LEU:C	2.37	0.45		
1:F:535:ASN:OD1	1:F:536:ILE:HD12	2.17	0.45		
1:G:235:GLU:O	1:G:239:ARG:HG3	2.17	0.45		
1:E:331:LEU:HD12	1:E:331:LEU:O	2.16	0.45		
1:F:535:ASN:O	1:H:538:ARG:HA	2.16	0.45		
1:G:75:GLU:HA	1:G:75:GLU:OE1	2.16	0.45		
1:E:179:VAL:O	1:E:179:VAL:CG1	2.64	0.45		
1:D:73:LEU:HD13	1:D:103:VAL:HA	1.98	0.45		
1:D:284:GLU:OE2	1:D:308:ASP:OD2	2.35	0.45		
1:F:462:VAL:HG12	1:F:480:GLY:O	2.15	0.45		
1:G:523:VAL:O	1:G:537:MET:HA	2.17	0.45		
1:E:292:PHE:CE1	1:E:325:MET:HG2	2.52	0.45		
1:D:69:SER:CB	2:D:602:EDO:H21	2.46	0.45		
1:H:74:LYS:HE3	1:H:109:SER:OG	2.17	0.45		
1:A:155:THR:O	1:A:170:TRP:HA	2.17	0.45		
1:C:290:LYS:HD2	1:D:48:ASP:OD2	2.17	0.45		
1:F:56:SER:HB3	1:F:480:GLY:HA2	1.99	0.45		
1:G:135:ILE:N	1:G:135:ILE:HD12	2.32	0.45		
1:G:506:ILE:HG23	1:G:542:ILE:HD12	1.99	0.45		
1:E:30:LEU:O	1:E:34:MET:HG2	2.16	0.45		
1:E:402:TYR:CE2	1:E:405:GLN:HB2	2.52	0.45		
1:D:144:VAL:CG2	1:D:166:ALA:HB2	2.40	0.45		
1:H:234:SER:O	1:H:238:VAL:HG23	2.17	0.45		
1:F:287:GLU:OE2	1:F:291:ARG:NH1	2.50	0.44		
1:G:339:ALA:HB1	1:G:372:MET:CE	2.46	0.44		
1:E:162:THR:O	1:E:162:THR:CG2	2.65	0.44		
1:D:165:ASN:OD1	1:D:168:THR:N	2.48	0.44		
1:F:462:VAL:CG1	1:F:481:VAL:HA	2.48	0.44		
1:H:340:THR:O	1:H:341:GLN:HB2	2.17	0.44		
1:H:411:ARG:HD2	1:H:411:ARG:C	2.37	0.44		
1:C:403:HIS:CE1	1:C:459:ARG:HG2	2.52	0.44		

	A h	Interatomic	Clash		
Atom-1	Atom-2	distance (\AA)	overlap (Å)		
1:E:343:LEU:HD23	1:E:356:GLU:HB3	2.00	0.44		
1:D:424:THR:OG1	1:D:535:ASN:HA	2.18	0.44		
1:F:426:ILE:HD12	1:F:456:TYR:CE1	2.52	0.44		
1:G:337:VAL:HG22	1:G:370:CYS:HB2	1.99	0.44		
1:H:30:LEU:N	1:H:31:PRO:CD	2.81	0.44		
1:H:469:ALA:HB1	1:H:473:ARG:HH22	1.83	0.44		
1:A:19:GLU:OE1	1:C:418:ARG:NH1	2.51	0.44		
1:A:419:ASP:O	1:A:423:VAL:HG23	2.17	0.44		
1:B:30:LEU:N	1:B:31:PRO:CD	2.80	0.44		
1:H:60:ILE:HB	1:H:372:MET:HG3	2.00	0.44		
1:H:486:TYR:OH	1:H:500:ARG:NH1	2.51	0.44		
1:A:416:LEU:N	1:A:416:LEU:HD23	2.32	0.44		
1:E:236:GLN:NE2	1:E:240:ASP:OD1	2.51	0.44		
1:G:60:ILE:HG12	1:G:83:ILE:HB	2.00	0.44		
1:E:128:GLY:HA2	1:E:237:ASP:OD2	2.18	0.43		
1:H:46:ASP:HB3	1:H:49:SER:HB2	2.00	0.43		
1:A:469:ALA:HA	1:A:485:LEU:HD13	1.98	0.43		
1:D:194:SER:OG	1:D:211:ASN:HB2	2.18	0.43		
1:F:284:GLU:HG2	1:F:305:ALA:HB3	1.99	0.43		
1:A:486:TYR:CZ	1:A:488:GLU:HB2	2.54	0.43		
1:B:515:LEU:HD22	1:B:542:ILE:CD1	2.49	0.43		
1:E:87:ASN:OD1	1:E:89:SER:HB2	2.19	0.43		
1:G:406:LEU:HD21	1:G:457:ARG:HG2	1.99	0.43		
1:F:421:THR:HG22	1:F:452:LEU:HD12	2.01	0.43		
1:G:152:VAL:HG11	1:G:169:VAL:HG23	2.00	0.43		
1:B:412:ARG:NH1	1:D:404:ARG:HD3	2.32	0.43		
1:C:319:PHE:HB3	2:C:605:EDO:H22	2.00	0.43		
1:D:309:LEU:O	1:D:313:ILE:HG12	2.18	0.43		
1:H:243:PHE:CE2	1:H:247:HIS:CE1	3.07	0.43		
1:H:445:THR:HG22	1:H:445:THR:O	2.19	0.43		
1:A:451:GLN:OE1	2:A:602:EDO:C2	2.66	0.43		
1:C:259:LYS:CE	5:C:709:HOH:O	2.67	0.43		
1:G:68:ARG:NH1	1:G:99:SER:OG	2.51	0.43		
1:G:124:LEU:C	1:G:124:LEU:HD23	2.39	0.43		
1:G:253:PHE:HD1	1:G:280:ILE:HB	1.83	0.43		
1:G:309:LEU:O	1:G:313:ILE:HG12	2.19	0.43		
1:H:88:PHE:CD2	1:H:240:ASP:HB3	2.53	0.43		
1:F:235:GLU:O	1:F:239:ARG:HG3	2.19	0.43		
1:B:517:VAL:HG22	1:B:543:SER:OXT	2.19	0.43		
1:C:246:GLU:OE2	1:E:528:ARG:NH1	2.41	0.43		
1:E:518:GLY:O	1:G:418:ARG:NH2	2.51	0.43		

	A h	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:D:124:LEU:C	1:D:124:LEU:HD23	2.39	0.43	
1:H:56:SER:HB3	1:H:480:GLY:HA2	2.00	0.43	
1:H:377:THR:HA	1:H:383:PRO:HB3	2.00	0.43	
1:A:133:THR:HA	1:A:170:TRP:O	2.19	0.43	
1:F:412:ARG:NH2	1:H:404:ARG:HG2	2.34	0.43	
1:C:155:THR:HG22	1:C:157:ASP:N	2.32	0.42	
1:C:259:LYS:HE2	5:C:709:HOH:O	2.19	0.42	
1:G:237:ASP:O	1:G:241:LEU:HG	2.19	0.42	
1:G:406:LEU:CD1	1:G:410:LEU:HD11	2.49	0.42	
1:A:423:VAL:HG12	1:C:431:ALA:HB1	2.00	0.42	
1:E:27:GLN:HB3	1:E:50:GLU:O	2.19	0.42	
1:F:462:VAL:HG13	1:F:481:VAL:HA	2.01	0.42	
1:F:509:GLY:O	1:F:514:PHE:N	2.52	0.42	
1:D:482:PHE:CD1	1:D:482:PHE:N	2.87	0.42	
1:F:335:PRO:HB3	1:F:477:LEU:O	2.19	0.42	
1:A:72:ARG:HA	1:A:72:ARG:HD3	1.86	0.42	
1:B:26:GLN:O	1:B:27:GLN:NE2	2.44	0.42	
1:B:438:ALA:HB1	1:B:514:PHE:O	2.19	0.42	
1:E:118:ARG:HH21	1:E:118:ARG:HG3	1.84	0.42	
1:G:486:TYR:CZ	1:G:488:GLU:HB2	2.55	0.42	
1:A:152:VAL:HG13	1:A:209:VAL:HG23	2.02	0.42	
1:B:494:TRP:CZ3	1:B:526:GLY:O	2.72	0.42	
1:H:463:ILE:HD11	1:H:514:PHE:HD2	1.83	0.42	
1:B:527:TRP:HB3	1:B:536:ILE:CD1	2.47	0.42	
1:F:496:ASP:O	1:F:500:ARG:HG3	2.19	0.42	
1:F:539:VAL:CG1	1:H:420:PRO:HB3	2.49	0.42	
1:B:493:ILE:HG23	1:B:496:ASP:HB2	2.00	0.42	
1:E:408:GLU:HG3	1:E:411:ARG:HH12	1.84	0.42	
1:F:408:GLU:OE1	1:H:408:GLU:OE1	2.38	0.42	
1:F:260:ALA:HB2	1:F:294:GLU:HG3	2.02	0.42	
1:G:57:THR:OG1	1:G:479:ARG:HD2	2.20	0.42	
1:B:449:SER:OG	3:B:603:GOL:H31	2.20	0.42	
1:C:421:THR:HG23	1:C:534:THR:HB	2.01	0.42	
1:C:538:ARG:CZ	1:C:540:LEU:HD21	2.50	0.42	
1:F:412:ARG:HD3	1:H:404:ARG:CZ	2.50	0.42	
1:A:330:ASN:O	1:A:455:ARG:NH1	2.53	0.42	
1:A:28:GLN:HA	5:A:763:HOH:O	2.19	0.41	
1:G:382:PHE:HB3	1:G:385:GLU:OE1	2.20	0.41	
1:C:137:GLN:HE22	2:C:607:EDO:H12	1.85	0.41	
1:D:253:PHE:HD1	1:D:280:ILE:HB	1.86	0.41	
1:F:243:PHE:CE1	1:F:247:HIS:ND1	2.88	0.41	

	A h o	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:154:VAL:HG22	1:A:169:VAL:CG2	2.50	0.41	
1:C:403:HIS:ND1	1:C:459:ARG:NH1	2.68	0.41	
1:E:154:VAL:HA	1:E:169:VAL:O	2.21	0.41	
1:E:346:MET:HA	1:E:349:LYS:O	2.20	0.41	
1:D:258:ARG:HB3	1:D:287:GLU:HG2	2.02	0.41	
1:G:68:ARG:NH2	1:G:98:GLU:HB2	2.35	0.41	
1:F:401:VAL:CG2	1:F:403:HIS:NE2	2.83	0.41	
1:G:191:GLY:HA3	1:G:311:ILE:HG23	2.02	0.41	
1:G:382:PHE:HB3	1:G:385:GLU:HB2	2.01	0.41	
1:D:421:THR:HG23	1:D:534:THR:HB	2.03	0.41	
1:F:339:ALA:O	1:F:340:THR:HB	2.20	0.41	
1:B:493:ILE:HG23	1:B:496:ASP:CG	2.41	0.41	
1:G:76:MET:HE2	1:G:387:VAL:HG21	2.02	0.41	
1:C:412:ARG:HG3	1:C:412:ARG:HH11	1.86	0.41	
2:C:605:EDO:H11	1:D:358:SER:HB2	2.01	0.41	
1:D:57:THR:OG1	1:D:479:ARG:HD2	2.20	0.41	
1:F:475:VAL:HG21	1:F:481:VAL:HG11	1.99	0.41	
1:F:491:GLU:HB2	1:F:497:ASP:HB2	2.01	0.41	
1:G:68:ARG:O	1:G:68:ARG:HG2	2.21	0.41	
1:G:298:VAL:HG12	1:G:298:VAL:O	2.21	0.41	
1:G:339:ALA:HB1	1:G:372:MET:HE2	2.03	0.41	
1:C:319:PHE:CA	2:C:605:EDO:H22	2.51	0.41	
4:C:601:FLC:OG1	4:C:601:FLC:CA	2.69	0.41	
1:E:323:LYS:HB3	1:F:42:LEU:HD22	2.01	0.41	
1:H:364:VAL:O	1:H:479:ARG:NH1	2.44	0.41	
1:C:193:ILE:HD11	1:C:213:GLY:CA	2.51	0.41	
1:A:414:ALA:CB	1:A:455:ARG:HH21	2.34	0.40	
1:A:435:CYS:HB2	1:A:520:LEU:HD12	2.03	0.40	
1:A:253:PHE:HD1	1:A:280:ILE:HB	1.85	0.40	
1:F:236:GLN:OE1	1:F:239:ARG:NH1	2.55	0.40	
1:F:290:LYS:HE2	1:F:290:LYS:HA	2.03	0.40	
1:F:419:ASP:OD1	1:F:419:ASP:C	2.60	0.40	
1:G:452:LEU:O	1:G:455:ARG:HG2	2.22	0.40	
1:A:414:ALA:HB2	1:A:455:ARG:NH2	2.35	0.40	
1:H:253:PHE:HD1	1:H:280:ILE:HB	1.86	0.40	
1:H:444:THR:HG21	1:H:447:GLY:CA	2.51	0.40	
1:F:94:GLU:OE1	1:F:94:GLU:O	2.40	0.40	
1:F:287:GLU:OE2	1:F:291:ARG:CZ	2.69	0.40	
1:G:135:ILE:HD12	1:G:161:ARG:O	2.21	0.40	
1:B:258:ARG:HD3	5:B:733:HOH:O	2.21	0.40	
1:B:411:ARG:NH2	1:D:411:ARG:NH1	2.70	0.40	

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
1:C:93:HIS:HB2	1:G:543:SER:HB3	2.03	0.40	
1:F:68:ARG:NH2	1:F:98:GLU:HB3	2.37	0.40	
1:G:68:ARG:NH2	1:G:95:TYR:O	2.46	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Per	cer	ntiles	;
1	А	508/542~(94%)	495 (97%)	12 (2%)	1 (0%)	4	7	58	
1	В	408/542~(75%)	392 (96%)	15 (4%)	1 (0%)	4	7	58	
1	С	510/542~(94%)	497 (98%)	12 (2%)	1 (0%)	4	7	58	
1	D	461/542~(85%)	447 (97%)	12 (3%)	2 (0%)	3	4	41	
1	Е	516/542~(95%)	498 (96%)	16 (3%)	2(0%)	3	4	41	
1	F	398/542~(73%)	378~(95%)	19 (5%)	1 (0%)	4	1	50	
1	G	482/542~(89%)	466 (97%)	12 (2%)	4 (1%)	1	9	23	
1	Н	388/542~(72%)	375~(97%)	11 (3%)	2~(0%)	2	9	35	
All	All	3671/4336 (85%)	3548 (97%)	109 (3%)	14 (0%)	3	4	41	

All (14) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	Н	117	TYR
1	С	340	THR
1	Е	416	LEU
1	D	340	THR
1	G	109	SER
1	Н	340	THR
1	А	340	THR

Continued from previous page...

Mol	Chain	Res	Type
1	В	340	THR
1	Е	340	THR
1	F	340	THR
1	G	28	GLN
1	G	340	THR
1	G	491	GLU
1	D	490	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	416/431~(96%)	409 (98%)	7 (2%)	60	75
1	В	331/431~(77%)	328~(99%)	3(1%)	78	89
1	С	410/431~(95%)	405 (99%)	5 (1%)	71	83
1	D	385/431~(89%)	379~(98%)	6 (2%)	62	77
1	Ε	414/431~(96%)	409 (99%)	5 (1%)	71	83
1	F	326/431~(76%)	317~(97%)	9~(3%)	43	59
1	G	401/431~(93%)	396~(99%)	5 (1%)	71	83
1	Н	320/431~(74%)	310(97%)	10 (3%)	40	55
All	All	3003/3448 (87%)	2953~(98%)	50 (2%)	60	75

All (50) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	72	ARG
1	А	116	SER
1	А	199	LYS
1	А	227	GLN
1	А	263	VAL
1	А	534	THR
1	А	541	SER
1	В	256	PHE

L D W I D E

ww

Conti	Continued from previous page									
Mol	Chain	Res	Type							
1	В	416	LEU							
1	В	508	SER							
1	С	68	ARG							
1	С	71	GLU							
1	С	190	ASP							
1	С	294	GLU							
1	С	429	VAL							
1	Е	89	SER							
1	Е	358	SER							
1	Е	412	ARG							
1	Е	491	GLU							
1	Е	541	SER							
1	D	50	GLU							
1	D	175	ASN							
1	D	214	VAL							
1	D	261	SER							
1	D	487	ARG							
1	D	488	GLU							
1	F	76	MET							
1	F	94	GLU							
1	F	117	TYR							
1	F	255	SER							
1	F	256	PHE							
1	F	299	SER							
1	F	408	GLU							
1	F	488	GLU							
1	F	537	MET							
1	G	40	GLU							
1	G	69	SER							
1	G	70	VAL							
1	G	75	GLU							
1	G	256	PHE							
1	Н	56	SER							
1	Н	69	SER							
1	Н	89	SER							
1	Н	115	LEU							
1	Н	234	SER							
1	Н	242	ARG							
1	Н	259	LYS							
1	Н	294	GLU							
1	Н	331	LEU							
1	Н	470	GLN							

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

33 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Bos	Link Bond lengths		Bond angles				
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
3	GOL	F	602	-	$5,\!5,\!5$	0.50	0	$5,\!5,\!5$	0.66	0
3	GOL	F	603	-	$5,\!5,\!5$	0.65	0	$5,\!5,\!5$	0.80	0
2	EDO	С	604	-	3,3,3	0.49	0	2,2,2	0.30	0
4	FLC	С	601	-	$12,\!12,\!12$	2.11	1 (8%)	$17,\!17,\!17$	3.25	10 (58%)
2	EDO	В	602	-	3,3,3	0.62	0	2,2,2	0.18	0
3	GOL	В	604	-	$5,\!5,\!5$	0.60	0	$5,\!5,\!5$	0.78	0
3	GOL	В	603	-	$5,\!5,\!5$	0.69	0	$5,\!5,\!5$	0.76	0
3	GOL	Е	605	-	$5,\!5,\!5$	0.57	0	$5,\!5,\!5$	1.05	0
2	EDO	G	602	-	3,3,3	0.54	0	2,2,2	0.58	0
2	EDO	С	608	-	3,3,3	0.42	0	2,2,2	0.40	0
3	GOL	Е	604	-	$5,\!5,\!5$	0.88	0	$5,\!5,\!5$	1.45	1 (20%)
2	EDO	G	601	-	3,3,3	0.48	0	2,2,2	0.40	0
2	EDO	Е	601	-	3,3,3	0.51	0	2,2,2	0.40	0
2	EDO	С	606	-	3,3,3	0.65	0	2,2,2	0.31	0

Mal	Tuno	Chain	Dog	Link	Bo	Bond lengths			Bond angles		
IVIOI	туре	Unain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
3	GOL	G	603	-	$5,\!5,\!5$	0.66	0	$5,\!5,\!5$	1.41	1 (20%)	
3	GOL	С	609	-	$5,\!5,\!5$	0.91	0	$5,\!5,\!5$	1.22	0	
2	EDO	В	601	-	3,3,3	0.54	0	2,2,2	0.72	0	
4	FLC	D	601	-	$12,\!12,\!12$	1.47	1 (8%)	$17,\!17,\!17$	1.59	2 (11%)	
2	EDO	С	605	-	3,3,3	0.58	0	2,2,2	0.29	0	
2	EDO	С	602	-	3,3,3	0.50	0	2,2,2	0.32	0	
2	EDO	Е	602	-	3,3,3	0.44	0	2,2,2	0.58	0	
2	EDO	А	601	-	3,3,3	0.44	0	2,2,2	0.66	0	
3	GOL	Н	601	-	$5,\!5,\!5$	0.38	0	$5,\!5,\!5$	0.34	0	
2	EDO	А	602	-	3, 3, 3	0.45	0	$2,\!2,\!2$	0.71	0	
2	EDO	С	603	-	3, 3, 3	0.53	0	$2,\!2,\!2$	0.30	0	
2	EDO	D	602	-	3, 3, 3	0.58	0	2,2,2	0.56	0	
2	EDO	F	601	-	3,3,3	0.49	0	2,2,2	0.86	0	
3	GOL	А	604	-	$5,\!5,\!5$	0.50	0	$5,\!5,\!5$	1.39	1 (20%)	
3	GOL	Н	602	-	$5,\!5,\!5$	0.52	0	$5,\!5,\!5$	0.52	0	
3	GOL	А	603	-	$5,\!5,\!5$	0.63	0	$5,\!5,\!5$	1.03	0	
2	EDO	С	607	-	3,3,3	0.49	0	2,2,2	0.33	0	
3	GOL	D	603	-	$5,\!5,\!5$	0.48	0	$5,\!5,\!5$	1.04	0	
3	GOL	E	603	-	$5,\!5,\!5$	0.45	0	$5,\!5,\!5$	0.55	0	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	GOL	F	602	-	-	2/4/4/4	-
3	GOL	F	603	-	-	2/4/4/4	-
2	EDO	С	604	-	-	0/1/1/1	-
4	FLC	С	601	-	-	8/16/16/16	-
2	EDO	В	602	-	-	0/1/1/1	-
3	GOL	В	604	-	-	4/4/4/4	-
3	GOL	В	603	-	-	2/4/4/4	-
3	GOL	Е	605	-	-	2/4/4/4	-
2	EDO	G	602	-	-	1/1/1/1	-
2	EDO	С	608	-	-	0/1/1/1	-
3	GOL	Е	604	-	-	2/4/4/4	-
2	EDO	G	601	-	-	1/1/1/1	-
2	EDO	Е	601	-	-	1/1/1/1	-
2	EDO	C	606	_	_	0/1/1/1	_

Chirals

Torsions	Rings
3/4/4/4	-
2/4/4/4	-
1/1/1/1	-

Continued from previous page...

Mol Type Chain Res Link

3	GOL	G	603	-	-	3/4/4/4	-
3	GOL	С	609	-	-	2/4/4/4	-
2	EDO	В	601	-	-	1/1/1/1	-
4	FLC	D	601	-	-	9/16/16/16	-
2	EDO	С	605	-	-	1/1/1/1	-
2	EDO	С	602	-	-	1/1/1/1	-
2	EDO	Е	602	-	-	0/1/1/1	-
2	EDO	А	601	-	-	1/1/1/1	-
3	GOL	Н	601	-	-	2/4/4/4	-
2	EDO	А	602	-	-	1/1/1/1	-
2	EDO	С	603	-	-	0/1/1/1	-
2	EDO	D	602	-	-	1/1/1/1	-
2	EDO	F	601	-	-	1/1/1/1	-
3	GOL	А	604	-	-	4/4/4/4	-
3	GOL	Н	602	-	-	4/4/4/4	-
3	GOL	А	603	-	-	0/4/4/4	-
2	EDO	С	607	-	-	0/1/1/1	-
3	GOL	D	603	-	-	3/4/4/4	-
3	GOL	Е	603	-	-	4/4/4/4	-

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
4	С	601	FLC	CB-CBC	5.90	1.59	1.53
4	D	601	FLC	CB-CBC	2.67	1.56	1.53

All (15) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
4	С	601	FLC	OB2-CBC-CB	5.98	123.44	113.05
4	С	601	FLC	CA-CB-CBC	5.43	121.76	110.11
4	С	601	FLC	OB2-CBC-OB1	-5.17	107.38	123.82
4	С	601	FLC	OB1-CBC-CB	4.78	129.02	122.25
4	D	601	FLC	OB2-CBC-CB	4.26	120.46	113.05
4	С	601	FLC	OA2-CAC-OA1	-4.17	112.91	123.30
4	С	601	FLC	OA2-CAC-CA	3.87	126.78	114.35
4	С	601	FLC	OHB-CB-CG	-3.14	102.06	109.40
3	G	603	GOL	O2-C2-C3	2.52	120.24	109.12
3	E	604	GOL	O1-C1-C2	2.38	121.59	110.20
4	C	601	FLC	OHB-CB-CA	-2.31	103.99	109.40

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	С	601	FLC	CB-CA-CAC	2.27	119.32	113.81
4	D	601	FLC	OB2-CBC-OB1	-2.17	116.92	123.82
4	С	601	FLC	OHB-CB-CBC	2.17	111.91	108.86
3	А	604	GOL	O2-C2-C1	-2.08	99.98	109.12

There are no chirality outliers.

All (63) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	А	604	GOL	O1-C1-C2-C3
3	А	604	GOL	C1-C2-C3-O3
3	В	603	GOL	O1-C1-C2-C3
3	С	609	GOL	C1-C2-C3-O3
3	С	609	GOL	O2-C2-C3-O3
3	Е	603	GOL	O1-C1-C2-C3
3	Е	603	GOL	C1-C2-C3-O3
3	Е	604	GOL	O1-C1-C2-C3
3	Е	605	GOL	O1-C1-C2-C3
3	F	602	GOL	O1-C1-C2-C3
3	F	603	GOL	C1-C2-C3-O3
3	G	603	GOL	C1-C2-C3-O3
4	С	601	FLC	CAC-CA-CB-CG
4	С	601	FLC	CG-CB-CBC-OB1
4	С	601	FLC	CG-CB-CBC-OB2
4	С	601	FLC	OHB-CB-CBC-OB1
4	С	601	FLC	OHB-CB-CBC-OB2
4	D	601	FLC	CAC-CA-CB-CBC
4	D	601	FLC	CAC-CA-CB-CG
4	D	601	FLC	CAC-CA-CB-OHB
4	D	601	FLC	CG-CB-CBC-OB1
4	D	601	FLC	CG-CB-CBC-OB2
4	D	601	FLC	OHB-CB-CBC-OB1
4	D	601	FLC	OHB-CB-CBC-OB2
4	С	601	FLC	CAC-CA-CB-CBC
3	Ε	605	GOL	O1-C1-C2-O2
3	D	603	GOL	O2-C2-C3-O3
3	F	602	GOL	O1-C1-C2-O2
3	Н	601	GOL	O1-C1-C2-O2
3	Н	602	GOL	O2-C2-C3-O3
3	В	604	GOL	C1-C2-C3-O3
3	D	603	GOL	O1-C1-C2-C3
3	D	603	GOL	C1-C2-C3-O3

Mol	Chain	Res	Type	Atoms
3	Н	601	GOL	O1-C1-C2-C3
3	Н	602	GOL	O1-C1-C2-C3
3	Н	602	GOL	C1-C2-C3-O3
3	А	604	GOL	O1-C1-C2-O2
3	А	604	GOL	O2-C2-C3-O3
3	Е	603	GOL	O1-C1-C2-O2
3	Е	604	GOL	O1-C1-C2-O2
3	F	603	GOL	O2-C2-C3-O3
3	G	603	GOL	O2-C2-C3-O3
2	В	601	EDO	O1-C1-C2-O2
2	Е	601	EDO	O1-C1-C2-O2
2	D	602	EDO	O1-C1-C2-O2
4	С	601	FLC	CAC-CA-CB-OHB
3	В	603	GOL	O1-C1-C2-O2
3	Е	603	GOL	O2-C2-C3-O3
4	D	601	FLC	CA-CB-CBC-OB2
2	G	602	EDO	O1-C1-C2-O2
3	Н	602	GOL	O1-C1-C2-O2
2	С	605	EDO	O1-C1-C2-O2
4	D	601	FLC	CA-CB-CBC-OB1
4	С	601	FLC	OHB-CB-CG-CGC
3	В	604	GOL	O2-C2-C3-O3
2	А	601	EDO	O1-C1-C2-O2
3	В	604	GOL	O1-C1-C2-C3
3	В	604	GOL	O1-C1-C2-O2
3	G	603	GOL	01-C1-C2-O2
2	F	601	EDO	O1-C1-C2-O2
2	G	601	EDO	01-C1-C2-O2
2	A	602	EDO	01-C1-C2-O2
2	С	602	EDO	O1-C1-C2-O2

Continued from previous page...

There are no ring outliers.

14 monomers are involved in 27 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	F	603	GOL	1	0
4	С	601	FLC	1	0
3	В	603	GOL	1	0
2	Е	601	EDO	2	0
2	С	606	EDO	1	0
3	G	603	GOL	1	0
4	D	601	FLC	2	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	С	605	EDO	5	0
2	А	602	EDO	2	0
2	С	603	EDO	4	0
2	D	602	EDO	3	0
2	F	601	EDO	2	0
3	Н	602	GOL	1	0
2	С	607	EDO	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q < 0.9
1	А	516/542~(95%)	0.22	33 (6%) 19 25	21, 35, 63, 87	0
1	В	414/542~(76%)	0.26	24 (5%) 23 29	23, 35, 61, 86	0
1	С	514/542~(94%)	0.10	8 (1%) 72 78	23, 36, 55, 76	0
1	D	479/542~(88%)	0.52	55 (11%) 4 7	23, 38, 72, 84	0
1	Ε	518/542~(95%)	0.04	7 (1%) 75 80	25, 37, 58, 78	0
1	F	406/542~(74%)	0.65	53 (13%) 3 4	31, 48, 74, 88	0
1	G	496/542~(91%)	0.58	60 (12%) 4 6	33, 52, 71, 84	0
1	Η	398/542~(73%)	0.64	39 (9%) 7 10	36, 54, 73, 87	0
All	All	3741/4336 (86%)	0.36	279 (7%) 14 19	21, 42, 68, 88	0

All (279) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	527	TRP	7.0
1	F	511	LEU	5.8
1	D	168	THR	5.8
1	D	144	VAL	5.8
1	Н	256	PHE	5.7
1	А	182	VAL	5.7
1	D	146	LEU	5.7
1	G	169	VAL	5.5
1	F	517	VAL	5.4
1	G	182	VAL	5.2
1	D	153	LEU	5.1
1	F	493	ILE	5.1
1	D	154	VAL	4.9
1	G	176	ILE	4.9
1	F	131	ILE	4.8
1	G	218	ARG	4.8

6NN	7
-----	---

Mol	Chain	Res	Type	RSRZ
1	D	169	VAL	4.8
1	F	542	ILE	4.7
1	F	490	PRO	4.6
1	В	415	PRO	4.6
1	Н	370	CYS	4.4
1	F	506	ILE	4.4
1	D	170	TRP	4.3
1	А	179	VAL	4.2
1	А	178	ARG	4.1
1	G	133	THR	4.1
1	В	361	ALA	4.1
1	Н	275	HIS	4.1
1	А	163	ARG	4.1
1	D	492	ALA	4.0
1	G	135	ILE	4.0
1	F	478	CYS	4.0
1	G	177	VAL	4.0
1	D	493	ILE	3.9
1	G	171	VAL	3.9
1	F	494	TRP	3.9
1	D	186	ILE	3.9
1	D	25	PHE	3.9
1	D	200	ILE	3.8
1	Н	364	VAL	3.8
1	G	492	ALA	3.8
1	G	489	PRO	3.8
1	Н	30	LEU	3.7
1	D	134	GLY	3.7
1	G	180	VAL	3.7
1	F	487	ARG	3.7
1	Н	72	ARG	3.6
1	G	156	VAL	3.6
1	В	338	CYS	3.6
1	G	145	GLU	3.6
1	А	197	VAL	3.6
1	F	495	ALA	3.6
1	D	215	LEU	3.6
1	F	540	LEU	3.6
1	G	533	TYR	3.6
1	G	487	ARG	3.5
1	G	163	ARG	3.5
1	D	176	ILE	3.5

6NN	7
-----	---

Mol	Chain	Res	Type	RSRZ
1	Н	368	ALA	3.5
1	D	198	GLN	3.5
1	G	338	CYS	3.5
1	D	24	PHE	3.4
1	F	30	LEU	3.4
1	G	192	LEU	3.4
1	Н	363	ALA	3.4
1	Е	26	GLN	3.3
1	В	364	VAL	3.3
1	D	490	PRO	3.2
1	В	514	PHE	3.2
1	F	364	VAL	3.2
1	Н	272	PRO	3.2
1	G	222	ASN	3.2
1	F	368	ALA	3.2
1	F	507	GLU	3.2
1	F	336	VAL	3.1
1	G	179	VAL	3.1
1	F	370	CYS	3.1
1	А	144	VAL	3.1
1	В	516	ARG	3.1
1	F	510	LYS	3.1
1	F	130	GLU	3.1
1	А	338	CYS	3.1
1	D	478	CYS	3.1
1	F	477	LEU	3.1
1	G	131	ILE	3.1
1	G	173	TYR	3.1
1	D	195	LEU	3.1
1	D	26	GLN	3.1
1	С	303	MET	3.1
1	F	369	ASP	3.1
1	В	370	CYS	3.1
1	Н	371	ILE	3.1
1	D	179	VAL	3.0
1	F	272	PRO	3.0
1	F	335	PRO	3.0
1	F	492	ALA	3.0
1	G	272	PRO	3.0
1	A	156	VAL	3.0
1	Н	478	CYS	3.0
1	А	493	ILE	3.0

Mol	Chain	Res	Type	RSRZ
1	В	371	ILE	3.0
1	Н	34	MET	3.0
1	Е	111	ALA	2.9
1	Е	517	VAL	2.9
1	Н	52	VAL	2.9
1	D	166	ALA	2.9
1	F	518	GLY	2.9
1	D	171	VAL	2.9
1	F	543	SER	2.9
1	Е	34	MET	2.9
1	G	219	LYS	2.9
1	D	218	ARG	2.9
1	Н	361	ALA	2.9
1	G	370	CYS	2.8
1	G	134	GLY	2.8
1	А	147	VAL	2.8
1	D	147	VAL	2.8
1	В	365	LEU	2.8
1	Н	485	LEU	2.8
1	G	359	ASP	2.8
1	D	155	THR	2.8
1	G	16	LEU	2.8
1	G	178	ARG	2.8
1	Н	128	GLY	2.8
1	А	200	ILE	2.8
1	D	165	ASN	2.8
1	D	527	TRP	2.8
1	А	146	LEU	2.7
1	В	355	ALA	2.7
1	В	363	ALA	2.7
1	A	214	VAL	2.7
1	D	370	CYS	2.7
1	D	213	GLY	2.7
1	G	174	PRO	2.7
1	A	215	LEU	2.7
1	F	367	GLY	2.7
1	С	159	ALA	2.6
1	G	208	GLN	2.6
1	D	145	GLU	2.6
1	A	370	CYS	2.6
1	F	326	ILE	2.6
1	G	146	LEU	2.6

Mol	Chain	Res	Type	RSRZ
1	А	342	MET	2.6
1	С	338	CYS	2.6
1	В	362	ASN	2.6
1	Н	362	ASN	2.6
1	В	357	THR	2.6
1	Н	358	SER	2.6
1	А	180	VAL	2.6
1	В	358	SER	2.5
1	G	160	PHE	2.5
1	D	142	SER	2.5
1	F	57	THR	2.5
1	F	481	VAL	2.5
1	F	516	ARG	2.5
1	D	217	SER	2.5
1	В	416	LEU	2.5
1	F	515	LEU	2.5
1	Н	367	GLY	2.5
1	Н	365	LEU	2.5
1	Н	372	MET	2.5
1	G	360	VAL	2.5
1	А	158	PRO	2.5
1	Н	31	PRO	2.5
1	D	214	VAL	2.5
1	F	363	ALA	2.5
1	G	191	GLY	2.5
1	С	370	CYS	2.4
1	Н	477	LEU	2.4
1	D	336	VAL	2.4
1	Н	271	GLY	2.4
1	F	500	ARG	2.4
1	Н	269	ALA	2.4
1	G	188	ILE	2.4
1	А	368	ALA	2.4
1	D	338	CYS	2.4
1	F	275	HIS	2.4
1	H	313	ILE	2.4
1	F	235	GLU	2.4
1	D	363	ALA	2.4
1	H	286	HIS	2.4
1	D	143	GLU	2.4
1	D	167	ASN	2.4
1	А	159	ALA	2.4

6NN	7
-----	---

Continued from previous page						
Mol	Chain	Res	Type	RSRZ		
1	А	339	ALA	2.4		
1	F	489	PRO	2.4		
1	В	360	VAL	2.4		
1	Н	58	SER	2.4		
1	Н	338	CYS	2.4		
1	F	491	GLU	2.3		
1	F	26	GLN	2.3		
1	D	163	ARG	2.3		
1	А	134	GLY	2.3		
1	F	484	LEU	2.3		
1	В	337	VAL	2.3		
1	F	52	VAL	2.3		
1	С	493	ILE	2.3		
1	В	30	LEU	2.3		
1	G	205	LEU	2.3		
1	G	365	LEU	2.3		
1	Н	113	SER	2.3		
1	G	181	PRO	2.3		
1	G	363	ALA	2.3		
1	A	142	SER	2.3		
1	В	57	THR	2.3		
1	F	496	ASP	2.3		
1	G	200	ILE	2.3		
1	H	311	ILE	2.3		
1	F	541	SER	2.3		
1	G	22	THR	2.3		
1	H	236	GLN	2.3		
1	D	360	VAL	2.3		
1	F	534	THR	2.2		
1	G	480	GLY	2.2		
1	Н	369	ASP	2.2		
1	B	131	ILE	2.2		
1	D	530	GLY	2.2		
1	D	369	ASP	2.2		
1	A	177	VAL	2.2		
1	G	364	VAL	2.2		
1	H	366	ASP	2.2		
1	B	368	ALA	2.2		
1	C	363	ALA	2.2		
1	G	165	ASN	2.2		
1	F	451	GLN	2.2		
1	G	162	THR	2.2		
-	U U	1 104	1 TTTT			

Mol	Chain	Res	Type	RSRZ	
1	Е	115	LEU	2.2	
1	А	152	VAL	2.2	
1	D	367	GLY	2.2	
1	F	337	VAL	2.2	
1	Н	235	GLU	2.2	
1	D	199	LYS	2.1	
1	А	337	VAL	2.1	
1	А	492	ALA	2.1	
1	В	394	ALA	2.1	
1	F	476	HIS	2.1	
1	G	94	GLU	2.1	
1	G	223	LEU	2.1	
1	F	329	CYS	2.1	
1	В	130	GLU	2.1	
1	G	148	LYS	2.1	
1	Е	178	ARG	2.1	
1	G	184	GLY	2.1	
1	G	154	VAL	2.1	
1	Н	339	ALA	2.1	
1	Н	360	VAL	2.1	
1	F	479	ARG	2.1	
1	А	181	PRO	2.1	
1	G	493	ILE	2.1	
1	А	166	ALA	2.1	
1	D	481	VAL	2.1	
1	С	112	GLY	2.1	
1	D	164	GLY	2.1	
1	А	174	PRO	2.1	
1	D	157	ASP	2.1	
1	F	366	ASP	2.1	
1	G	369	ASP	2.1	
1	G	362	ASN	2.1	
1	Н	357	THR	2.1	
1	А	355	ALA	2.1	
1	С	111	ALA	2.1	
1	G	339	ALA	2.1	
1	Е	112	GLY	2.1	
1	F	475	VAL	2.1	
1	G	147	VAL	2.1	
1	D	335	PRO	2.1	
1	D	491	GLU	2.0	
1	Н	273	GLU	2.0	

		1	1 0	
Mol	Chain	Res	Type	RSRZ
1	F	371	ILE	2.0
1	G	242	ARG	2.0
1	А	340	THR	2.0
1	G	201	GLY	2.0
1	G	245	VAL	2.0
1	G	337	VAL	2.0
1	D	188	ILE	2.0
1	D	280	ILE	2.0
1	А	201	GLY	2.0
1	D	454	SER	2.0
1	D	111	ALA	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
2	EDO	G	601	4/4	0.76	0.29	52,64,77,77	0
3	GOL	F	603	6/6	0.79	0.19	52,66,81,81	0
3	GOL	F	602	6/6	0.84	0.17	43,63,75,80	0
2	EDO	В	602	4/4	0.84	0.16	40,48,53,53	0
3	GOL	A	603	6/6	0.85	0.20	49,64,74,79	0
3	GOL	D	603	6/6	0.86	0.24	47,58,70,70	0
3	GOL	G	603	6/6	0.86	0.17	44,56,78,82	0
2	EDO	G	602	4/4	0.88	0.23	42,50,55,56	0
3	GOL	В	604	6/6	0.89	0.19	36,50,70,70	0
3	GOL	Н	601	6/6	0.89	0.18	51,64,76,76	0
3	GOL	E	604	6/6	0.90	0.30	36,50,60,63	0
2	EDO	E	602	4/4	0.90	0.20	36,45,55,66	0

6NN7

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
4	FLC	D	601	13/13	0.90	0.12	44,59,72,72	0
3	GOL	Е	605	6/6	0.91	0.28	32,49,59,71	0
2	EDO	Е	601	4/4	0.91	0.29	27,44,53,59	0
2	EDO	В	601	4/4	0.91	0.20	38,45,48,55	0
3	GOL	В	603	6/6	0.91	0.18	$35,\!51,\!67,\!67$	0
2	EDO	F	601	4/4	0.91	0.43	48,58,65,72	0
3	GOL	Е	603	6/6	0.91	0.14	$50,\!64,\!75,\!77$	0
4	FLC	С	601	13/13	0.91	0.19	31,44,54,63	0
2	EDO	А	602	4/4	0.91	0.17	43,55,66,66	0
3	GOL	А	604	6/6	0.92	0.31	$27,\!44,\!61,\!64$	0
3	GOL	Н	602	6/6	0.92	0.09	$52,\!64,\!75,\!77$	0
3	GOL	С	609	6/6	0.92	0.33	$28,\!43,\!55,\!55$	0
2	EDO	С	602	4/4	0.92	0.13	50,60,69,71	0
2	EDO	С	604	4/4	0.94	0.27	$41,\!49,\!55,\!57$	0
2	EDO	С	603	4/4	0.94	0.21	$38,\!46,\!56,\!58$	0
2	EDO	С	606	4/4	0.95	0.17	$39,\!47,\!54,\!55$	0
2	EDO	D	602	4/4	0.95	0.30	$37,\!50,\!54,\!65$	0
2	EDO	A	601	4/4	0.95	0.22	$2\overline{9,38,49,58}$	0
2	EDO	C	605	4/4	0.96	0.19	$29,\!45,\!54,\!58$	0
2	EDO	С	607	4/4	0.96	0.24	43,54,59,68	0
2	EDO	С	608	4/4	0.97	0.08	48,57,66,68	0

6.5 Other polymers (i)

There are no such residues in this entry.

