

Full wwPDB X-ray Structure Validation Report (i)

Jun 23, 2024 – 04:03 PM EDT

PDB ID	:	4WZ7
Title	:	Crystal structure of mitochondrial NADH:ubiquinone oxidoreductase from
		Yarrowia lipolytica.
Authors	:	Wirth, C.; Zickermann, V.; Brandt, U.; Hunte, C.
Deposited on	:	2014-11-18
Resolution	:	3.60 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.37.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
	(# Entries)	(# Entries, resolution range(A))
R _{free}	130704	1257 (3.70-3.50)
Clashscore	141614	1353 (3.70-3.50)
Ramachandran outliers	138981	1307 (3.70-3.50)
Sidechain outliers	138945	1307 (3.70-3.50)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of cha	in				
1	1	327	61%		27%		8% •	•
2	2	438	58%		34%		8%	
3	3	89	43%	45%			11%	•
4	4	470	64%		299	%	6%	
5	5	619	69%			26%	•	
6	6	185	42% 29%		9%	•	19%	
7	А	628	97%					•

Mol	Chain	Length	Quality of chain							
8	В	370	91%	9%						
9	С	444	54% 24% •	18%						
10	Е	195	99%	·						
11	G	133	80%	20%						
12	Н	154	93%	6% ·						
13	Ι	137	72%	23% ••						
14	Κ	183	52% 26% ·	20%						
15	L	89	44% 45%	10% •						
16	D	57	84%	16%						
16	Z	57	89%	11%						
17	F	54	100%							
18	J	63	97%	•						
19	М	29	86%	14%						
20	Ν	50	92%	8%						
21	О	70	94%	6%						
22	Р	46	93%	7%						
23	Q	51	98%	•						
24	R	30	100%							
25	S	69	94%	6%						
26	AH	15	100%							
26	Т	15	100%							
27	U	26	100%							
28	V	22	82%	18%						
29	AB	9	100%							
29	AY	9	100%							

\mathbf{Mol}	Chain	Length	Quality of chain
29	BE	9	100%
29	W	9	78% 22%
30	AJ	16	100%
30	AV	16	100%
30	BH	16	88% 12%
30	Х	16	100%
31	AR	13	100%
31	AT	13	100%
31	Y	13	100%
32	AA	18	100%
32	AW	18	100%
32	BB	18	100%
32	BG	18	100%
33	AC	47	85% 15%
33	AD	47	100%
34	AE	48	92% 8%
35	AF	35	100%
36	AG	25	100%
37	AI	36	100%
37	AL	36	100%
38	AK	76	100%
38	AN	76	97%
39	AM	17	100%
40	AO	32	100%
41	AP	11	100%

Mol	Chain	Longth	Quality of chain	
10101	Ullaili	Length	Quality of cham	
41	AS	11	100%	
42	AQ	8	100%	
42	ВА	8	100%	
43	AU	58	100%	_
44	AX	39	100%	
45	AZ	40	95%	5%
46	BC	20	90% 10%	, 0
47	BD	19	100%	
47	BF	19	100%	
48	BI	905	• 99%	_

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
50	SF4	K	500	-	-	Х	-

4WZ7

2 Entry composition (i)

There are 50 unique types of molecules in this entry. The entry contains 35169 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called NADH-ubiquinone oxidoreductase chain 1.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	1	318	Total 2177	C 1431	N 352	O 389	${ m S}{ m 5}$	0	0	0

• Molecule 2 is a protein called NADH dehydrogenase subunit 2.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
2	2	438	Total 3142	C 2092	N 482	O 556	S 12	0	0	0

• Molecule 3 is a protein called NADH-ubiquinone oxidoreductase chain 3.

Mol	Chain	Residues		Atoms Total C N O S					AltConf	Trace
3	3	89	Total 641	C 444	N 91	0 104	${S \over 2}$	0	0	0

• Molecule 4 is a protein called NADH-ubiquinone oxidoreductase chain 4.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
4	4	470	Total 3017	C 1952	N 507	0 546	S 12	0	0	0

• Molecule 5 is a protein called NADH-ubiquinone oxidoreductase chain 5.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
5	5	619	Total 4065	C 2636	N 677	О 727	$\begin{array}{c} \mathrm{S} \\ \mathrm{25} \end{array}$	0	0	0

• Molecule 6 is a protein called NADH-ubiquinone oxidoreductase chain 6.

Mol	Chain	Residues		At	\mathbf{oms}			ZeroOcc	AltConf	Trace
6	6	149	Total 1078	C 735	N 156	0 180	${ m S} 7$	0	0	0

• Molecule 7 is a protein called NUAM protein.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
7	А	628	Total 3226	C 1933	N 639	O 639	S 15	0	0	0

• Molecule 8 is a protein called NUBM protein.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
8	В	370	Total 2013	C 1214	N 391	O 399	${ m S} 9$	0	0	0

• Molecule 9 is a protein called NUCM protein.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
9	С	366	Total 2647	C 1675	N 455	0 496	S 21	0	0	0

• Molecule 10 is a protein called 39-kDa subunit.

Mol	Chain	Residues		Ato	\mathbf{ms}		ZeroOcc	AltConf	Trace
10	Е	195	Total 975	$\begin{array}{c} \mathrm{C} \\ 585 \end{array}$	N 195	O 195	0	0	0

• Molecule 11 is a protein called NUGM protein.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
11	G	133	Total 880	C 558	N 154	0 164	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0	0

• Molecule 12 is a protein called Subunit NUHM of protein NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
12	Н	154	Total 803	C 476	N 156	0 164	${f S} {f 7}$	0	0	0

• Molecule 13 is a protein called Subunit NUIM of protein NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		A	toms		ZeroOcc	AltConf	Trace	
13	Ι	137	Total 857	C 533	N 145	O 169	S 10	0	0	0

• Molecule 14 is a protein called Subunit NUKM of protein NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		\mathbf{A}	toms			ZeroOcc	AltConf	Trace
14	K	147	Total 1023	C 642	N 182	O 187	S 12	0	0	0

• Molecule 15 is a protein called NADH-ubiquinone oxidoreductase chain 4L.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
15	L	89	Total 660	C 437	N 108	0 112	${ m S} { m 3}$	0	0	0

• Molecule 16 is a protein called unknown subunits 1.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
16	7	57	Total	С	Ν	0	0	0	0
10		51	285	171	57	57	0	0	0
16	Л	57	Total	С	Ν	0	0	0	0
10		51	285	171	57	57		U	0

• Molecule 17 is a protein called unknown subunits 2.

Mol	Chain	Residues		Aton	ıs		ZeroOcc	AltConf	Trace
17	F	54	Total 270	C 162	N 54	O 54	0	0	0

• Molecule 18 is a protein called unknown subunits.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
18	J	63	Total 315	C 189	N 63	O 63	0	0	0

• Molecule 19 is a protein called unknown subunits.

Mol	Chain	Residues	L	Ator	\mathbf{ns}		ZeroOcc	AltConf	Trace
19	М	29	Total 145	C 87	N 29	O 29	0	0	0

• Molecule 20 is a protein called unknown subunits.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
20	Ν	50	Total 250	C 150	N 50	O 50	0	0	0

• Molecule 21 is a protein called unknown subunits.

Mol	Chain	Residues		Atom	ıs		ZeroOcc	AltConf	Trace
21	О	70	Total 350	C 210	N 70	O 70	0	0	0

• Molecule 22 is a protein called unknown subunits.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
22	Р	46	Total 230	C 138	N 46	O 46	0	0	0

• Molecule 23 is a protein called unknown subunits.

Mol	Chain	Residues		Aton	ıs		ZeroOcc	AltConf	Trace
23	Q	51	Total 255	C 153	N 51	O 51	0	0	0

• Molecule 24 is a protein called unknown subunits.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
24	R	30	Total 150	C 90	N 30	O 30	0	0	0

• Molecule 25 is a protein called unknown subunits.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
25	S	69	Total 345	C 207	N 69	O 69	0	0	0

• Molecule 26 is a protein called unknown subunits.

Mol	Chain	Residues	L	Ator	\mathbf{ns}		ZeroOcc	AltConf	Trace
26	Т	15	Total 75	C 45	N 15	O 15	0	0	0
26	AH	15	Total 75	C 45	N 15	O 15	0	0	0

• Molecule 27 is a protein called unknown subunits.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
27	U	26	Total 130	C 78	N 26	O 26	0	0	0

• Molecule 28 is a protein called unknown subunits.

Mol	Chain	Residues	L	Ator	ns		ZeroOcc	AltConf	Trace
28	V	22	Total 110	C 66	N 22	O 22	0	0	0

• Molecule 29 is a protein called unknown subunits.

Mol	Chain	Residues	A	Aton	ns		ZeroOcc	AltConf	Trace
20	W	9	Total	С	Ν	0	0	0	Ο
25	••	5	45	27	9	9	0	0	0
20	٨B	0	Total	С	Ν	Ο	0	0	0
29	AD	9	45	27	9	9	0	0	0
20	۸V	0	Total	С	Ν	Ο	0	0	0
29	AI	9	45	27	9	9	0	0	0
20	PF	0	Total	С	Ν	0	0	0	0
29	DE	9	45	27	9	9	0	0	0

• Molecule 30 is a protein called unknown subunits.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
30	Х	16	Total C N O	0	0	0
			80 48 16 16			
30	АТ	16	Total C N O	0	0	0
- 30	AJ	10	80 48 16 16	0	0	0
20	437	16	Total C N O	0	0	0
- 30	AV	10	80 48 16 16	0	0	0
20	DU	16	Total C N O	0	0	0
- 30	ЪΠ	10	80 48 16 16	U	U	U

• Molecule 31 is a protein called unknown subunits.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
31	Y	13	Total C N O 65 39 13 13	0	0	0
31	AR	13	Total C N O 65 39 13 13	0	0	0
31	AT	13	Total C N O 65 39 13 13	0	0	0

Mol	Chain	Residues	Ator	ns	ZeroOcc	AltConf	Trace
20	ΛΛ	19	Total C	N O	0	0	0
52	AA	10	90 54	18 18	0	0	0
20	A 1 1/	19	Total C	N O	0	0	0
52	AW	10	90 54	18 18	0	0	0
20	BB	19	Total C	N O	0	0	0
52	DD	10	90 54	18 18	0	0	0
29	PC	10	Total C	N O	0	0	0
32	DG	10	90 54	18 18	0	0	0

• Molecule 32 is a protein called unknown subunits.

• Molecule 33 is a protein called unknown subunits.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
22		47	Total	С	Ν	0	0	0	0
55	AU	41	235	141	47	47	0	0	0
22		47	Total	С	Ν	0	0	0	0
ാ	AD	41	235	141	47	47		U	U

• Molecule 34 is a protein called unknown subunits.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
34	AE	48	Total 240	C 144	N 48	O 48	0	0	0

• Molecule 35 is a protein called unknown subunits.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
35	AF	35	Total 175	C 105	N 35	O 35	0	0	0

• Molecule 36 is a protein called unknown subunits.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
36	AG	25	Total 125	C 75	N 25	O 25	0	0	0

• Molecule 37 is a protein called unknown subunits.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
37	AI	36	Total 180	C 108	N 36	O 36	0	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
37	AL	36	Total 180	C 108	N 36	O 36	0	0	0

• Molecule 38 is a protein called unknown subunits.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
38	ΔK	76	Total	С	Ν	0	0	0	0
30	лп	10	380	228	76	76	0	0	
20	ΛN	76	Total	С	Ν	0	0	0	0
30	AN	70	380	228	76	76	0	0	0

• Molecule 39 is a protein called unknown subunits.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
39	AM	17	Total 85	C 51	N 17	O 17	0	0	0

• Molecule 40 is a protein called unknown subunits.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
40	AO	32	Total 160	C 96	N 32	O 32	0	0	0

• Molecule 41 is a protein called unknown subunits.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
41	ΔP	11	Total	С	Ν	0	0	0	0
41	ЛІ	11	55	33	11	11	0	0	0
41	19	11	Total	С	Ν	0	0	0	0
41	AS	11	54	32	11	11	0	0	0

• Molecule 42 is a protein called unknown subunits.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
42	AQ	8	Total	C 24	N o	0	0	0	0
			40	24	0	0			
12	RΔ	8	Total	С	Ν	0	0	0	Ο
42	DA	0	40	24	8	8	0	0	0

• Molecule 43 is a protein called unknown subunits.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace	
43	AU	58	Total 290	C 174	N 58	O 58	0	0	0

• Molecule 44 is a protein called unknown subunits.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace	
44	AX	39	Total 195	C 117	N 39	O 39	0	0	0

• Molecule 45 is a protein called unknown subunits.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace	
45	AZ	40	Total 200	C 120	N 40	O 40	0	0	0

• Molecule 46 is a protein called unknown subunits.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
46	BC	20	Total 100	C 60	N 20	O 20	0	0	0

• Molecule 47 is a protein called unknown subunits.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
47	BD	19	Total 95	$\begin{array}{c} \mathrm{C} \\ 57 \end{array}$	N 19	O 19	0	0	0
47	BF	19	Total 95	C 57	N 19	O 19	0	0	0

• Molecule 48 is a protein called unknown subunits.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
48	BI	9	Total 45	C 27	N 9	O 9	0	0	0

• Molecule 49 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula: Fe_2S_2).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
49	А	1	TotalFeS422	0	0
49	Н	1	TotalFeS422	0	0

• Molecule 50 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula: Fe_4S_4).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
50	А	1	TotalFeS844	0	0
50	А	1	TotalFeS844	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
50	В	1	TotalFeS844	0	0
50	Ι	1	TotalFeS844	0	0
50	Ι	1	TotalFeS844	0	0
50	К	1	TotalFeS844	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: NADH-ubiquinone oxidoreductase chain 1

• Molecule 3: NADH-ubiquinone oxidoreductase chain 3

Chain 3:

45%

11%

 \bullet Molecule 4: NADH-ubiquinone oxidore
ductase chain 4

 \bullet Molecule 5: NADH-ubiquinone oxidore
ductase chain 5

 \bullet Molecule 6: NADH-ubiquinone oxidore
ductase chain 6

• Molecule 10: 39-kDa subunit

Chain E:

99%

• Molecule 11: NUGM protein

Cha	ir	1	G	: '													80)%																		20	%	
X69 H72		P83	K84	Loo Loo	LOU	X9 <mark>9</mark>	-	X117	007.	X123	X132	X156	X160	X161 V167	2010	V165	I168	1 1 7 1	V172	E173	N176	W177	N1 80	E1 OD	E191	G192	H193	P194	D195	L196	R197	R198	1199	M200	1201	DOCO	FU24	

• Molecule 12: Subunit NUHM of protein NADH:Ubiquinone Oxidoreductase (Complex I)

(Cha	in	H:								93%	6% •
Y 4R	7129	T130 P131	<mark>8137</mark>	1140	C168	X217	X218	617Y	X221	X224		

• Molecule 13: Subunit NUIM of protein NADH:Ubiquinone Oxidoreductase (Complex I)

Chain I:	72%	23%	•••
X72 F78 A81 E82 F84 F84 F84 F84 F84 F84 F83 L87 L87 L87 A132	L135 L135 L135 L136 L136 L143 L	C172 C172 C175 C175 C175 C176 C176 C178 C178 C178 C178 C178 C178 C178 C178	V190 E191 Y192 X245 X250

• Molecule 14: Subunit NUKM of protein NADH:Ubiquinone Oxidoreductase (Complex I)

Chain K:	52%	26% ·	20%	
SER ALA PRO PRO PLY THR THR PRO PRO SER SER SER SER SER SER SER SER SER SER	PRIO LEU LEU PRO SER SER SER CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	473 F76 V79 F81 F81 C82 L83 A84 A84 C85	E89 V93 R102 LEU CLY I105	R108 A109 S110 P111
R112 9113 9114 9115 1116 1116 1116 1117 1123 1123 1123 1123 1123 1123 1123	0,133 0,134 0,134 1,134 1,134 1,139	H169 1170 V171 V177 V177 P181 P181 P182 P182	F192 L194 Q195 Q195 R196 N200 N200	K202 1203 T204 ARG
RP KG YS				

 \bullet Molecule 15: NADH-ubiquinone oxidoreductase chain 4L

Chain Z:

2 8 8 8 4

11%

• Molecule 16: unknown subunits 1

Chain D:	84%	16%
X100 X107 X107 X109 X114 X115 X115 X115 X135 X135 X135 X135 X135	X 156	
• Molecule 17: unknow	vn subunits 2	
Chain F: There are no outlier re	100% esidues recorded for this chain.	
• Molecule 18: unknow	vn subunits	
Chain J:	97%	•
X301 X352 X363 X363 X363		
• Molecule 19: unknow	vn subunits	
Chain M:	86%	14%
X401 X414 X415 X416 X21 X21 X22 X426 X429		
• Molecule 20: unknow	vn subunits	
Chain N:	92%	8%
X500 X519 X520 X521 X522 X522 X524 X524 X549 X549		
• Molecule 21: unknow	vn subunits	
Chain O:	94%	6%
X600 X615 X615 X615 X65 X65 X651 X669		
• Molecule 22: unknow	vn subunits	
Chain P:	93%	7%
X700 X711 X716 X720 X745		

• Molecule 23: unknown subunits		
Chain Q:	98%	·
X 96 0 33 00		
• Molecule 24: unknown subunits		
Chain R:	100%	
There are no outlier residues record	led for this chain.	
• Molecule 25: unknown subunits		
Chain S:	94%	6%
X1133 X1137 X1137 X1161 X1162 X1168 X1168		
• Molecule 26: unknown subunits		
Chain T:	100%	
There are no outlier residues record	led for this chain.	
• Molecule 26: unknown subunits		
Chain AH:	100%	
There are no outlier residues record	led for this chain.	
• Molecule 27: unknown subunits		
Chain U:	100%	
There are no outlier residues record	led for this chain.	
• Molecule 28: unknown subunits		
Chain V:	82%	18%
X1400 X1403 X1403 X1405 X1417 X1419 X1420 X1421 X1421		
• Molecule 29: unknown subunits		
Chain W: 7	78%	22%
X1500 X1504 X1506 X1506 X1508 X1508		

\bullet Molecule 29: unknown subunits	
Chain AB:	100%
There are no outlier residues recorded for	r this chain.
• Molecule 29: unknown subunits	
Chain AY:	100%
There are no outlier residues recorded for	r this chain
• Molecule 29: unknown subunits	
Chain BE:	100%
There are no outlier residues recorded for	r this chain.
• Molecule 30: unknown subunits	
Chain X:	100%
There are no outlier residues recorded for	r this chain.
• Molecule 30: unknown subunits	
Chain AJ:	100%
There are no outlier residues recorded for	r this chain.
• Molecule 30: unknown subunits	
Chain AV:	100%
There are no outlier residues recorded for	r this chain.
• Molecule 30: unknown subunits	
Chain BH: 889	% 12%
X51 00 X51 06 X51 08 X51 08 X51 16 X51 15	
• Molecule 31: unknown subunits	
Chain Y:	100%
There are no outlier residues recorded for	r this chain.
• Molecule 31: unknown subunits	
Chain AR:	100%
There are no outlier residues recorded for	r this chain.

• Molecule 31: unknown subunits		
Chain AT:	100%	
There are no outlier residues recorded for	or this chain.	
• Molecule 32: unknown subunits		
Chain AA:	100%	
There are no outlier residues recorded for	or this chain.	
• Molecule 32: unknown subunits		
Chain AW:	100%	
There are no outlier residues recorded for	or this chain.	
• Molecule 32: unknown subunits		
Chain BB:	100%	
There are no outlier residues recorded for	or this chain.	
• Molecule 32: unknown subunits		
Chain BG:	100%	
There are no outlier residues recorded for	or this chain.	
\bullet Molecule 33: unknown subunits		
Chain AC: 859	%	15%
X2000 X2012 X2014 X2015 X2014 X2014 X2035 X2036 X2036 X2036 X2036		
• Molecule 33: unknown subunits		
Chain AD:	100%	
There are no outlier residues recorded for	or this chain.	
• Molecule 34: unknown subunits		
Chain AE:	92%	8%
x2208 X2208 X2221 X2221 X2221 X2231		
\bullet Molecule 35: unknown subunits		
Chain AF:	100%	

Page 24	Full wwPDB X-ray Structure Validation Report	
There are no outlier	residues recorded for this chain.	
• Molecule 36: unkno	own subunits	
Chain AG:	100%	
There are no outlier	residues recorded for this chain.	
• Molecule 37: unkno	own subunits	
Chain AI:	100%	-
There are no outlier	residues recorded for this chain.	
• Molecule 37: unkno	own subunits	
Chain AL:	100%	_
There are no outlier	residues recorded for this chain.	
• Molecule 38: unkno	own subunits	
Chain AK:		
There are no outlier	residues recorded for this chain	
• Molecule 38: unkno	own subunits	
	Swii Subunits	
Chain AN:	97%	•
X3100 X3124 X3125 X3126 X3175 X3175		
• Molecule 39: unkno	own subunits	
• Molecule 55. ulikilo	Jwn Subunits	
Chain AM:	100%	
There are no outlier	residues recorded for this chain.	
• Molecule 40: unkno	own subunits	
Chain AO:	100%	_
There are no outlier	residues recorded for this chain.	
• Molecule 41: unkno	own subunits	
Chain AP:	100%	-
There are no outlier	residues recorded for this chain.	
• Molecule 41: unkno	own subunits	
Chain AS:	100%	_

W O R L D W I D E PROTEIN DATA BANK

There are no outlier residues recorded fMolecule 42: unknown subunits	for this chain.
Chain AQ:	100%
There are no outlier residues recorded f	for this chain.
• Molecule 42: unknown subunits	
Chain BA:	100%
There are no outlier residues recorded f	for this chain
• Molecule 43: unknown subunits	
• Molecule 49. ulikilowii subulitis	
Chain AU:	100%
There are no outlier residues recorded f	for this chain.
• Molecule 44: unknown subunits	
Chain AX:	100%
There are no outlier residues recorded f	for this chain.
• Molecule 45: unknown subunits	
Chain AZ:	95% 5%
X4300 X4325 X4326 X4329 X4339	
• Molecule 46: unknown subunits	
Chain BC:	90% 10%
x4600 x4613 x4613 x4613 x4619	
• Molecule 47: unknown subunits	
Chain BD:	100%
There are no outlier residues recorded f	for this chain.
• Molecule 47: unknown subunits	
Chain BF:	100%
Chain BF: There are no outlier residues recorded f	100% for this chain.

Chain BI: •	99%
X5200 UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK	UNIK UNIK UNIK UNIK UNIK UNIK UNIK UNIK
UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK	JUNK UNK UNK UNK UNK UNK UNK UNK UNK UNK
0.00 K 0.00 K	0.000 A 000
UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK	AWA AWA AWA AWA AWA AWA AWA AWA AWA AWA
UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK	UNRK UNRK UNRK UNRK UNRK UNRK UNRK UNRK
UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK	UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK
UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK	UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK
UNU UNU UNU UNU UNU UNU UNU UNU UNU UNU	лики лики лики лики лики лики лики лики
0.018 0.0180000000000	0.0.4. 0.0.4.
UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK	UNIK UNIK UNIK UNIK UNIK UNIK UNIK UNIK
UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK	UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK
UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK	0000 0000 0000 0000 0000 0000 0000 0000 0000
ANNU ANNU ANNU ANNU ANNU ANNU ANNU ANNU	ANNU CARACTERISTIC ANNU CARACTERISTICA CARACTERISTI
NK NY	A MARK MARK MARK MARK MARK MARK MARK MAR
	, , , , , , , , , , , , , , , , , , ,

4 Data and refinement statistics (i)

Property	Value	Source
Space group	H 3 2	Depositor
Cell constants	317.74Å 317.74Å 818.97Å	Deperitor
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor
$\mathbf{B}_{\mathrm{ascolution}}\left(\overset{\mathrm{A}}{\mathbf{\lambda}}\right)$	25.00 - 3.60	Depositor
Resolution (A)	50.00 - 3.60	EDS
% Data completeness	84.8 (25.00-3.60)	Depositor
(in resolution range)	85.0(50.00-3.60)	EDS
R_{merge}	0.52	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.01 (at 3.57 \text{\AA})$	Xtriage
Refinement program	BUSTER 2.10.0	Depositor
B B c	0.316 , 0.341	Depositor
It, Itfree	0.379 , 0.413	DCC
R_{free} test set	2191 reflections (1.41%)	wwPDB-VP
Wilson B-factor (Å ²)	106.8	Xtriage
Anisotropy	0.020	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.41, 999.0	EDS
L-test for $twinning^2$	$< L > = 0.41, < L^2 > = 0.24$	Xtriage
	0.039 for -1/3*h+1/3*k+1/3*l,-k,8/3*h+4/	
	$3^{*}k+1/3^{*}l$	
Estimated twinning fraction	0.097 for $-2/3$ *h $-1/3$ *k $-1/3$ *l $-1/3$ *h $-2/3$ *k+	Xtriage
0	$1/3^{+}l,-4/3^{+}h+4/3^{+}k+1/3^{+}l$	0
	$1.007 101 -11, 1/3 \cdot 11 - 1/3 \cdot K - 1/3 \cdot 1, -4/3 \cdot 11 - 0/3 \cdot K + 1/3 \cdot 11 - 0/3 \cdot K$	
F. F. correlation	$\frac{-1}{0.77}$	EDS
Total number of atoms	35169	wwPDR-VP
Average B, all atoms $(Å^2)$	109.0	wwPDB-VP
	100.0	

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.62% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FES, ${\rm SF4}$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	B	ond angles
MIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	1	0.49	0/1638	0.88	3/2224~(0.1%)
2	2	0.56	0/2613	0.89	1/3550~(0.0%)
3	3	0.52	0/533	0.94	1/728~(0.1%)
4	4	0.54	0/1920	0.86	0/2615
5	5	0.51	0/2813	0.82	0/3820
6	6	0.54	0/1090	0.87	0/1491
7	А	0.48	0/412	0.79	0/531
8	В	0.46	0/527	0.73	0/701
9	С	0.46	0/2653	0.82	7/3592~(0.2%)
11	G	0.39	0/566	0.67	0/766
12	Н	0.44	0/178	0.77	0/220
13	Ι	0.41	0/499	0.79	0/675
14	K	0.47	0/1042	0.80	2/1424~(0.1%)
15	L	0.58	0/666	0.91	0/902
All	All	0.50	0/17150	0.84	14/23239~(0.1%)

There are no bond length outliers.

All (14) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
3	3	82	LEU	C-N-CA	7.67	140.88	121.70
9	С	240	PRO	N-CA-CB	6.37	110.94	103.30
9	С	395	PRO	N-CA-CB	5.93	110.42	103.30
9	С	396	PRO	N-CA-CB	5.80	110.26	103.30
1	1	43	GLY	C-N-CA	5.68	135.90	121.70
9	С	232	PRO	N-CA-CB	5.60	110.02	103.30
2	2	267	THR	N-CA-CB	5.57	120.89	110.30
9	С	422	PRO	N-CA-CB	5.52	109.93	103.30
14	Κ	53	PRO	N-CA-CB	5.48	109.87	103.30
1	1	241	PHE	CA-CB-CG	5.36	126.77	113.90

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
14	K	61	LEU	C-N-CA	5.21	134.73	121.70
9	С	430	PRO	N-CA-CB	5.21	109.55	103.30
9	С	217	TYR	CA-CB-CG	5.13	123.15	113.40
1	1	326	ILE	N-CA-CB	5.02	122.34	110.80

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	1	2177	0	1809	76	0
2	2	3142	0	2868	136	0
3	3	641	0	608	45	0
4	4	3017	0	2276	107	0
5	5	4065	0	3176	91	0
6	6	1078	0	1125	55	0
7	А	3226	0	1029	10	0
8	В	2013	0	839	22	0
9	С	2647	0	2375	71	0
10	Ε	975	0	229	1	0
11	G	880	0	581	21	0
12	Н	803	0	302	7	0
13	Ι	857	0	563	31	0
14	Κ	1023	0	899	24	0
15	L	660	0	701	34	0
16	D	285	0	64	5	0
16	Ζ	285	0	63	3	0
17	F	270	0	60	0	0
18	J	315	0	71	1	0
19	М	145	0	36	2	0
20	Ν	250	0	53	2	0
21	0	350	0	75	2	0
22	Р	230	0	52	2	0
23	Q	255	0	55	2	0
24	R	150	0	32	0	0

4WZ7	
------	--

	Chain	Non-H	H(model)	H(addad)	Clashes	Symm-Clashes
25	Cliain	245		77	Olaslies	Symmetric lashes
20		540 75	0	17	2	0
20	П	75	0	17	0	0
20	I	120	0	17	0	0
21	U	130	0	29	0	0
28		110	0	24		0
29	AB	45	0	14	0	0
29	AY	45	0	11	0	0
29	BE	45	0	12	0	0
29	W	45	0	10	1	0
30	AJ	80	0	19	0	0
30	AV	80	0	19	0	0
30	BH	80	0	18	1	0
30	X	80	0	19	0	0
31	AR	65	0	16	0	0
31	AT	65	0	15	0	0
31	Y	65	0	16	0	0
32	AA	90	0	20	0	0
32	AW	90	0	24	0	0
32	BB	90	0	21	0	0
32	BG	90	0	22	0	0
33	AC	235	0	49	4	0
33	AD	235	0	52	0	0
34	AE	240	0	54	2	0
35	AF	175	0	37	0	0
36	AG	125	0	29	0	0
37	AI	180	0	39	0	0
37	AL	180	0	44	0	0
38	AK	380	0	79	0	0
38	AN	380	0	84	1	0
39	AM	85	0	20	0	0
40	AO	160	0	34	0	0
41	AP	55	0	13	0	0
41	AS	54	0	13	0	0
42	AQ	40	0	10	0	0
42	BA	40	0	10	0	0
43	AU	290	0	64	0	0
44	AX	195	0	44	0	0
45	AZ	200	0	48	1	0
46	BC	100	0	22	1	0
47	BD	95	0	22	0	0
47	BF	95	0	21	0	0
48	BI	45	0	11	0	0

Contir d fr onic

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
49	А	4	0	0	0	0
49	Н	4	0	0	1	0
50	А	16	0	0	1	0
50	В	8	0	0	0	0
50	Ι	16	0	0	2	0
50	Κ	8	0	0	2	0
All	All	35169	0	21161	682	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 12.

All (682) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:5:585:TYR:O	5:5:589:PRO:HD2	1.36	1.25
3:3:98:LEU:HD11	6:6:170:LEU:HA	1.27	1.15
13:I:175:CYS:HB2	13:I:184:ILE:HD13	1.17	1.09
12:H:217:UNK:CB	12:H:220:UNK:O	2.01	1.08
6:6:28:ASN:HB3	6:6:29:PRO:HD3	1.34	1.06
5:5:95:ILE:HD11	5:5:336:ALA:HB1	1.41	1.02
4:4:225:PHE:H	4:4:284:THR:HG22	1.27	0.99
2:2:247:TYR:HA	2:2:250:LEU:HD23	1.44	0.96
1:1:208:GLU:HA	1:1:212:VAL:O	1.68	0.94
8:B:139:GLY:HA2	8:B:142:LEU:HD12	1.48	0.92
1:1:159:MET:HG2	3:3:77:VAL:HG21	1.49	0.92
5:5:585:TYR:O	5:5:589:PRO:CD	2.16	0.92
4:4:223:PRO:HG3	4:4:231:LEU:HG	1.52	0.91
9:C:385:PHE:HA	13:I:135:LEU:HD21	1.55	0.88
2:2:209:LEU:HD23	2:2:212:ILE:HD12	1.57	0.87
4:4:280:ILE:O	4:4:284:THR:HG23	1.75	0.87
8:B:410:GLU:O	8:B:414:LEU:HG	1.75	0.86
5:5:173:MET:HB3	5:5:235:TRP:HD1	1.40	0.85
9:C:293:GLY:HA2	9:C:295:MET:N	1.92	0.85
6:6:23:ILE:HG22	6:6:35:TYR:HB3	1.59	0.85
9:C:146:SER:HA	9:C:181:THR:HG22	1.58	0.85
2:2:1:MET:HA	2:2:4:LEU:HD13	1.57	0.85
5:5:151:TYR:HB2	5:5:171:VAL:HG21	1.57	0.85
13:I:175:CYS:CB	13:I:184:ILE:HD13	2.03	0.85
11:G:168:ILE:O	11:G:168:ILE:HG22	1.77	0.85
6:6:176:PRO:HA	6:6:179:ILE:HG22	1.59	0.84
9:C:388:TYR:O	13:I:139:ILE:HB	1.78	0.84

A 4 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:3:98:LEU:CD1	6:6:170:LEU:HA	2.06	0.83
2:2:78:VAL:HG11	2:2:321:LEU:HD21	1.60	0.83
3:3:61:ILE:O	3:3:65:PRO:HD3	1.78	0.83
13:I:139:ILE:HG23	13:I:140:CYS:H	1.42	0.82
2:2:230:ILE:O	2:2:234:ILE:HG13	1.80	0.82
5:5:576:ALA:HA	5:5:579:VAL:HB	1.61	0.82
34:AE:2212:UNK:CB	34:AE:2227:UNK:HA	2.10	0.80
1:1:194:VAL:HG12	1:1:293:PHE:HZ	1.47	0.78
12:H:217:UNK:CB	12:H:221:UNK:HA	2.13	0.78
5:5:126:TRP:CZ3	5:5:146:ILE:HG12	2.18	0.78
1:1:213:ALA:HB1	1:1:218:GLU:H	1.46	0.77
9:C:293:GLY:HA2	9:C:296:LEU:H	1.49	0.77
3:3:98:LEU:HD13	6:6:170:LEU:HD13	1.65	0.77
2:2:67:TYR:CE1	2:2:314:THR:HG21	2.21	0.76
7:A:135:ALA:HB2	13:I:131:ILE:HG22	1.66	0.76
1:1:45:TYR:HB3	1:1:47:LEU:HG	1.66	0.75
4:4:265:LEU:HG	4:4:266:LEU:N	2.01	0.75
2:2:138:TYR:OH	15:L:73:LEU:HB2	1.86	0.75
4:4:288:THR:HG21	4:4:307:ILE:HG12	1.67	0.75
13:I:176:GLN:HA	13:I:184:ILE:HG23	1.69	0.75
2:2:71:LEU:HD21	2:2:314:THR:HA	1.68	0.74
6:6:12:THR:HG21	6:6:46:TYR:HB2	1.69	0.74
2:2:125:THR:HA	6:6:161:ILE:HD11	1.68	0.74
9:C:337:MET:HA	9:C:340:PHE:HD2	1.52	0.74
13:I:181:VAL:O	13:I:182:ASP:HB2	1.87	0.73
9:C:329:CYS:HB3	9:C:456:THR:HG21	1.70	0.73
2:2:262:ILE:O	2:2:266:LEU:HG	1.88	0.73
2:2:155:MET:HA	15:L:73:LEU:HD21	1.68	0.73
1:1:240:ALA:HA	1:1:286:LEU:HD21	1.70	0.73
1:1:235:ILE:HA	1:1:238:ILE:HG22	1.71	0.73
4:4:327:UNK:CB	4:4:397:LEU:HB3	2.18	0.72
6:6:28:ASN:HB3	6:6:29:PRO:CD	2.17	0.72
34:AE:2208:UNK:CB	34:AE:2231:UNK:HA	2.19	0.72
6:6:74:ILE:HG13	6:6:78:LEU:HD13	1.71	0.72
8:B:60:UNK:HA	8:B:138:GLU:OE2	1.89	0.72
9:C:289:LEU:HD23	11:G:173:GLU:HB2	1.71	0.72
4:4:85:UNK:O	4:4:89:UNK:CB	2.37	0.72
5:5:173:MET:HB3	5:5:235:TRP:CD1	2.24	0.72
13:I:175:CYS:HB2	13:I:184:ILE:CD1	2.10	0.71
3:3:91:VAL:O	3:3:95:LEU:HG	1.90	0.71
2:2:180:ASN:HA	15:L:47:PHE:HE2	1.56	0.71

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:2:247:TYR:HA	2:2:250:LEU:CD2	2.18	0.71
6:6:28:ASN:CB	6:6:29:PRO:HD3	2.18	0.71
15:L:54:LEU:O	15:L:57:ILE:HG22	1.90	0.71
1:1:240:ALA:HA	1:1:286:LEU:CD2	2.21	0.71
5:5:401:GLU:HG2	5:5:495:UNK:O	1.90	0.71
4:4:163:ALA:O	4:4:167:VAL:HG23	1.91	0.71
5:5:313:LEU:O	5:5:317:THR:HG23	1.91	0.70
2:2:208:LEU:HB3	2:2:244:ILE:HD11	1.74	0.70
2:2:173:ASN:HD21	15:L:40:LEU:HD13	1.56	0.70
4:4:450:UNK:HA	4:4:453:ILE:HD12	1.71	0.70
4:4:138:TYR:CZ	4:4:179:LEU:HB2	2.25	0.70
1:1:154:PHE:CZ	1:1:241:PHE:HE1	2.10	0.69
9:C:134:GLN:O	9:C:137:PRO:HD2	1.93	0.69
3:3:61:ILE:O	3:3:65:PRO:CD	2.41	0.69
1:1:194:VAL:HG12	1:1:293:PHE:CZ	2.26	0.69
14:K:61:LEU:HA	14:K:63:THR:H	1.56	0.69
4:4:178:MET:HB2	4:4:217:ALA:HB2	1.73	0.69
4:4:254:ALA:O	4:4:258:ILE:HG13	1.93	0.69
9:C:289:LEU:CD2	11:G:173:GLU:HB2	2.24	0.68
14:K:81:PHE:HE2	14:K:134:VAL:HG11	1.59	0.68
1:1:241:PHE:HA	1:1:244:TYR:CE2	2.28	0.68
5:5:143:TRP:HA	5:5:146:ILE:HG13	1.75	0.67
5:5:126:TRP:CH2	5:5:146:ILE:HG12	2.29	0.67
5:5:619:MET:O	5:5:620:LEU:HB2	1.94	0.67
3:3:98:LEU:HD12	6:6:173:ILE:HG12	1.74	0.67
2:2:214:ILE:HG23	2:2:268:LEU:HD22	1.77	0.67
2:2:269:LEU:O	2:2:273:VAL:HB	1.94	0.67
2:2:354:UNK:HA	2:2:361:VAL:HG21	1.75	0.67
2:2:212:ILE:HG12	2:2:244:ILE:CG2	2.25	0.66
2:2:376:PRO:HD3	4:4:142:GLU:HB2	1.77	0.66
2:2:75:ILE:HG12	2:2:238:LEU:HD23	1.76	0.66
4:4:387:PRO:HB2	5:5:141:VAL:HG13	1.78	0.66
13:I:184:ILE:HG23	13:I:184:ILE:O	1.94	0.66
8:B:413:MET:O	8:B:417:LEU:HG	1.95	0.66
4:4:400:GLN:HA	5:5:186:CYS:SG	2.36	0.65
4:4:458:ILE:O	4:4:462:LEU:HG	1.97	0.65
9:C:293:GLY:CA	9:C:296:LEU:H	2.08	0.65
5:5:341:LEU:HD11	5:5:466:ALA:HA	1.78	0.65
2:2:265:ILE:HD12	2:2:298:LEU:HG	1.79	0.65
4:4:459:ILE:O	4:4:463:ILE:HG13	1.96	0.65
13:I:181:VAL:O	13:I:182:ASP:CB	2.45	0.65

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:5:89:LEU:HB2	5:5:131:VAL:HG11	1.77	0.65
9:C:95:HIS:CG	9:C:96:GLY:H	2.15	0.65
9:C:293:GLY:HA2	9:C:295:MET:H	1.60	0.65
4:4:288:THR:HG21	4:4:307:ILE:CG1	2.26	0.64
11:G:168:ILE:O	11:G:168:ILE:CG2	2.45	0.64
1:1:149:ILE:HG12	1:1:316:LEU:HD23	1.80	0.64
2:2:213:GLY:HA3	2:2:221:LEU:HD12	1.78	0.64
6:6:70:LEU:HB3	15:L:71:LEU:HD23	1.80	0.64
5:5:364:UNK:HA	5:5:440:UNK:HA	1.80	0.64
11:G:168:ILE:HG23	11:G:171:LEU:HB3	1.79	0.64
4:4:247:ALA:HA	4:4:251:LEU:HD13	1.79	0.63
14:K:196:ARG:O	14:K:201:THR:CB	2.46	0.63
2:2:3:ILE:O	2:2:7:ILE:HG13	1.98	0.63
9:C:279:GLY:H	9:C:445:HIS:CE1	2.17	0.63
2:2:212:ILE:HG12	2:2:244:ILE:HG23	1.81	0.62
3:3:9:ILE:C	3:3:12:PRO:HD2	2.19	0.62
5:5:126:TRP:HA	5:5:129:ILE:HD12	1.81	0.62
2:2:414:LEU:HB3	4:4:165:PHE:HE2	1.64	0.62
5:5:288:UNK:CB	5:5:314:GLY:HA3	2.29	0.62
2:2:123:PHE:HB2	2:2:182:TYR:HB3	1.81	0.62
2:2:212:ILE:HG23	2:2:241:LYS:HG3	1.81	0.62
7:A:120:ASN:HD21	8:B:420:ASP:HB3	1.64	0.62
2:2:164:LEU:HB3	2:2:210:PHE:HB2	1.82	0.62
2:2:262:ILE:HG23	2:2:301:LEU:HD22	1.82	0.62
4:4:240:LEU:HD11	4:4:344:UNK:HA	1.81	0.62
6:6:101:LEU:HA	6:6:104:LEU:HD23	1.81	0.62
2:2:209:LEU:HD23	2:2:212:ILE:CD1	2.30	0.61
5:5:312:GLN:HB3	5:5:335:HIS:NE2	2.15	0.61
6:6:176:PRO:HA	6:6:179:ILE:CG2	2.29	0.61
33:AC:2012:UNK:HA	33:AC:2013:UNK:C	2.30	0.61
1:1:279:SER:HB2	22:P:711:UNK:HA	1.82	0.61
9:C:320:ASP:O	9:C:322:PRO:HD3	2.01	0.61
5:5:322:LEU:HD13	5:5:403:THR:HG22	1.83	0.61
5:5:123:PHE:HA	5:5:126:TRP:CD1	2.36	0.61
9:C:180:ILE:HD11	9:C:247:ILE:HD11	1.82	0.61
2:2:132:LEU:HG	6:6:168:VAL:HG23	1.83	0.61
2:2:139:LEU:HD11	15:L:69:ILE:HD11	1.82	0.61
4:4:152:ILE:O	4:4:156:GLY:HA3	2.01	0.61
5:5:30:UNK:HA	5:5:114:VAL:HG22	1.83	0.61
2:2:391:LEU:HD13	4:4:184:VAL:HG22	1.82	0.60
6:6:33:ILE:CD1	6:6:75:ILE:HG12	2.31	0.60

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:2:64:PHE:CZ	2:2:250:LEU:HD22	2.37	0.60
7:A:185:HIS:CD2	8:B:388:ARG:HD3	2.36	0.60
1:1:170:ILE:HG12	1:1:244:TYR:HB2	1.84	0.60
5:5:566:UNK:O	5:5:570:VAL:HG23	2.02	0.60
1:1:225:VAL:O	1:1:229:LEU:HB2	2.02	0.60
1:1:202:PHE:HA	1:1:205:THR:HB	1.83	0.60
2:2:262:ILE:O	2:2:265:ILE:HG12	2.01	0.60
4:4:204:LEU:HD22	4:4:268:GLU:HG2	1.84	0.60
5:5:92:ILE:HG22	5:5:124:THR:HG22	1.84	0.60
1:1:22:LEU:HG	1:1:236:ILE:HD11	1.83	0.59
33:AC:2020:UNK:HA	33:AC:2021:UNK:CB	2.32	0.59
5:5:618:SER:HB2	15:L:18:ASN:CB	2.33	0.59
14:K:117:MET:HB3	14:K:144:VAL:HG22	1.84	0.59
2:2:376:PRO:HA	4:4:139:ILE:HG22	1.85	0.59
8:B:411:ILE:HD13	8:B:449:UNK:HA	1.85	0.59
2:2:59:LEU:HB2	2:2:121:ASN:HB2	1.84	0.59
5:5:143:TRP:HH2	5:5:222:ALA:O	1.86	0.59
4:4:161:GLU:O	4:4:165:PHE:HD1	1.85	0.58
4:4:316:GLY:HA3	4:4:398:SER:HB2	1.85	0.58
5:5:370:LEU:O	5:5:373:THR:HB	2.04	0.58
14:K:111:PRO:HG3	14:K:134:VAL:HG13	1.86	0.58
2:2:138:TYR:CE2	15:L:69:ILE:HG23	2.39	0.58
5:5:633:LEU:HD11	6:6:109:LEU:HD22	1.85	0.58
2:2:164:LEU:HB3	2:2:210:PHE:CB	2.34	0.58
6:6:17:ILE:HG13	15:L:10:LEU:HD11	1.86	0.58
9:C:217:TYR:C	9:C:217:TYR:HD1	2.07	0.58
9:C:191:CYS:HB3	9:C:203:PHE:HA	1.86	0.58
4:4:143:ALA:O	4:4:146:PRO:HD2	2.04	0.58
4:4:228:HIS:HE1	4:4:287:LEU:HD13	1.69	0.58
1:1:152:SER:HB3	1:1:324:PHE:HZ	1.69	0.57
1:1:213:ALA:HB1	1:1:218:GLU:N	2.18	0.57
4:4:219:MET:HG2	4:4:224:LEU:HD12	1.85	0.57
6:6:176:PRO:HB3	15:L:72:SER:HB2	1.86	0.57
2:2:171:SER:HA	2:2:174:THR:OG1	2.04	0.57
2:2:259:UNK:O	2:2:262:ILE:HG12	2.04	0.57
14:K:199:ARG:O	14:K:200:ASN:HB2	2.03	0.57
5:5:191:VAL:HG23	5:5:211:LEU:HD23	1.85	0.57
8:B:309:UNK:HA	8:B:360:UNK:HA	1.85	0.57
1:1:314:ILE:HG12	3:3:103:VAL:HG12	1.86	0.57
2:2:231:LEU:HA	2:2:234:ILE:HD12	1.86	0.57
3:3:98:LEU:HD11	6:6:170:LEU:CA	2.17	0.57

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
13:I:187:THR:HB	13:I:188:PRO:CD	2.34	0.57
3:3:66:PHE:CE1	3:3:99:ILE:HG13	2.40	0.57
1:1:24:VAL:HG13	1:1:39:PRO:HG2	1.85	0.56
2:2:369:PHE:HD1	2:2:374:ILE:HG13	1.69	0.56
13:I:132:ALA:HB2	13:I:158:UNK:C	2.35	0.56
2:2:261:SER:O	2:2:265:ILE:HG23	2.05	0.56
4:4:364:GLY:N	4:4:433:UNK:O	2.33	0.56
5:5:308:SER:O	5:5:312:GLN:HG2	2.06	0.56
5:5:312:GLN:HB3	5:5:335:HIS:CE1	2.40	0.56
10:E:608:UNK:N	10:E:609:UNK:HA	2.19	0.56
4:4:455:ASN:O	4:4:459:ILE:HD12	2.05	0.56
1:1:201:PRO:O	1:1:205:THR:N	2.29	0.56
2:2:166:ILE:HD11	15:L:33:LEU:HG	1.87	0.56
4:4:399:LEU:HD21	4:4:414:UNK:HA	1.87	0.56
13:I:137:GLU:HG3	13:I:145:UNK:O	2.06	0.56
2:2:142:ALA:HB2	2:2:154:SER:HB2	1.88	0.56
14:K:79:VAL:HB	14:K:114:SER:OG	2.06	0.56
1:1:158:ILE:O	1:1:162:SER:N	2.39	0.56
2:2:51:THR:HB	2:2:61:PHE:HA	1.88	0.56
6:6:165:LEU:HD11	15:L:58:VAL:HG22	1.87	0.56
4:4:202:LEU:HD22	4:4:207:GLN:HG2	1.86	0.56
4:4:347:UNK:O	4:4:351:UNK:N	2.38	0.56
1:1:154:PHE:CZ	1:1:241:PHE:CE1	2.94	0.56
4:4:387:PRO:HD3	5:5:144:GLU:HB3	1.88	0.56
5:5:208:UNK:HA	5:5:209:THR:HG23	1.88	0.56
5:5:388:PRO:HA	5:5:393:TYR:HB2	1.88	0.56
2:2:299:LEU:HD11	2:2:386:ILE:HG12	1.88	0.55
1:1:28:LYS:HD3	1:1:38:GLY:H	1.70	0.55
2:2:256:UNK:O	2:2:258:UNK:N	2.39	0.55
2:2:375:PRO:HG2	4:4:138:TYR:HE2	1.71	0.55
5:5:143:TRP:CZ2	5:5:223:ALA:HA	2.40	0.55
4:4:220:VAL:HG22	4:4:227:ILE:HG21	1.87	0.55
4:4:295:GLN:HE21	4:4:300:VAL:HG11	1.72	0.55
5:5:92:ILE:HD12	5:5:127:MET:HG2	1.88	0.55
1:1:161:VAL:HG12	1:1:163:SER:H	1.71	0.55
13:I:145:UNK:HA	13:I:163:ASP:O	2.07	0.55
2:2:66:PHE:O	2:2:70:MET:HG2	2.06	0.55
2:2:149:LYS:O	2:2:227:ASN:HB3	2.07	0.55
2:2:269:LEU:HD21	2:2:298:LEU:HD11	1.89	0.55
4:4:384:ILE:HG12	4:4:421:UNK:HA	1.89	0.55
14:K:79:VAL:HG23	14:K:108:ARG:HA	1.88	0.55

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
14:K:192:PHE:HA	14:K:195:GLN:HB2	1.88	0.55
1:1:214:GLY:HA2	14:K:109:ALA:HB3	1.88	0.55
9:C:407:LYS:HE2	9:C:460:VAL:HG23	1.89	0.55
33:AC:2013:UNK:O	33:AC:2015:UNK:N	2.39	0.55
1:1:241:PHE:HA	1:1:244:TYR:CD2	2.42	0.54
2:2:211:LYS:HE3	2:2:244:ILE:HD13	1.89	0.54
2:2:295:TYR:HE1	2:2:402:LEU:HG	1.73	0.54
22:P:716:UNK:O	22:P:720:UNK:N	2.40	0.54
1:1:34:GLN:HE22	9:C:200:LEU:HD12	1.71	0.54
2:2:173:ASN:ND2	15:L:40:LEU:HD13	2.22	0.54
2:2:372:ILE:HB	2:2:410:ALA:CB	2.38	0.54
3:3:71:SER:O	3:3:74:LEU:HB3	2.06	0.54
4:4:366:THR:HG22	4:4:373:ALA:HB1	1.90	0.54
13:I:140:CYS:SG	13:I:144:ALA:HB2	2.47	0.54
9:C:140:ASP:HB2	9:C:147:MET:HB2	1.90	0.54
2:2:234:ILE:HG12	2:2:324:PHE:CG	2.43	0.54
6:6:153:VAL:HG13	6:6:157:ASN:HB3	1.89	0.54
14:K:121:GLY:HA2	50:K:500:SF4:S4	2.47	0.54
4:4:184:VAL:HB	4:4:210:ILE:HG21	1.90	0.54
8:B:142:LEU:HD11	8:B:253:UNK:CB	2.38	0.54
2:2:131:GLU:CB	15:L:62:LEU:HD21	2.38	0.54
4:4:219:MET:O	4:4:223:PRO:HA	2.07	0.54
5:5:549:UNK:O	5:5:560:UNK:N	2.41	0.54
12:H:137:SER:HA	12:H:140:ILE:HD12	1.89	0.54
3:3:65:PRO:CB	6:6:173:ILE:HG22	2.38	0.54
4:4:467:CYS:HB3	4:4:469:GLN:HG3	1.89	0.54
5:5:136:TYR:HB2	5:5:195:UNK:O	2.07	0.54
5:5:251:HIS:ND1	5:5:309:THR:HG21	2.23	0.54
5:5:424:THR:HA	5:5:427:TYR:CE2	2.43	0.53
4:4:255:LEU:HA	4:4:258:ILE:HD12	1.90	0.53
14:K:170:ILE:HG22	14:K:171:VAL:HG23	1.90	0.53
6:6:33:ILE:HD11	6:6:75:ILE:HG12	1.90	0.53
6:6:71:PHE:HE1	15:L:26:PHE:HB2	1.71	0.53
9:C:217:TYR:C	9:C:217:TYR:CD1	2.82	0.53
4:4:274:THR:HA	4:4:277:ILE:HD12	1.90	0.53
6:6:150:ILE:HD11	15:L:53:SER:HB2	1.90	0.53
13:I:189:ASN:HD21	13:I:245:UNK:CB	2.22	0.53
11:G:176:ASN:HA	11:G:193:HIS:HE1	1.73	0.53
4:4:292:THR:HA	4:4:295:GLN:HG2	1.90	0.53
9:C:149:THR:HG21	9:C:406:PRO:HD3	1.90	0.53
1:1:49:GLN:O	1:1:53:ASP:HB2	2.09	0.53

A 4 a m 1	At any 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:4:297:ASP:HB3	4:4:300:VAL:HB	1.90	0.53
9:C:147:MET:HG2	9:C:148:MET:N	2.24	0.53
3:3:62:LEU:O	3:3:65:PRO:HD2	2.09	0.53
5:5:331:HIS:CE1	5:5:396:LYS:HG2	2.44	0.53
6:6:173:ILE:HG12	6:6:174:ILE:HD12	1.91	0.53
9:C:87:PHE:HB3	9:C:100:LEU:HB3	1.91	0.53
6:6:55:PHE:O	6:6:59:TYR:HB2	2.09	0.52
1:1:187:UNK:HA	1:1:246:LEU:HD13	1.90	0.52
2:2:142:ALA:HB2	2:2:154:SER:CB	2.38	0.52
7:A:75:ALA:HB3	7:A:191:ARG:HD2	1.91	0.52
8:B:411:ILE:HD11	8:B:452:UNK:CB	2.39	0.52
2:2:397:PHE:O	2:2:401:VAL:HG23	2.08	0.52
4:4:251:LEU:HD23	4:4:310:MET:HG3	1.91	0.52
9:C:262:GLU:HG3	9:C:337:MET:HG2	1.92	0.52
9:C:313:ALA:O	9:C:317:VAL:HG23	2.09	0.52
16:D:144:UNK:C	16:D:146:UNK:H	2.22	0.52
3:3:69:GLU:HB3	3:3:95:LEU:HD13	1.92	0.52
4:4:375:TYR:CZ	4:4:454:MET:HG2	2.45	0.52
8:B:384:CYS:SG	8:B:426:ILE:HB	2.49	0.52
14:K:89:GLU:HG2	14:K:182:PRO:O	2.09	0.52
3:3:2:ASN:HB2	3:3:5:ILE:HG12	1.91	0.52
5:5:18:UNK:CB	5:5:115:ARG:HA	2.40	0.52
8:B:404:UNK:O	8:B:405:UNK:CB	2.57	0.52
1:1:159:MET:HG2	3:3:77:VAL:CG2	2.32	0.52
16:Z:39:UNK:C	16:Z:41:UNK:H	2.22	0.52
1:1:326:ILE:HG23	23:Q:933:UNK:CB	2.40	0.52
1:1:315:ILE:O	1:1:318:PRO:HD2	2.10	0.52
6:6:176:PRO:HB3	15:L:72:SER:CB	2.39	0.51
2:2:215:ALA:H	2:2:268:LEU:HD13	1.74	0.51
4:4:168:LEU:O	4:4:172:LEU:HB2	2.10	0.51
4:4:252:LYS:HG3	4:4:332:UNK:CB	2.41	0.51
12:H:218:UNK:C	12:H:220:UNK:N	2.72	0.51
2:2:64:PHE:CE1	2:2:250:LEU:HD22	2.45	0.51
14:K:116:ILE:HG13	14:K:143:TRP:HB2	1.90	0.51
9:C:95:HIS:CD2	9:C:96:GLY:H	2.28	0.51
9:C:124:GLU:HB3	9:C:426:LYS:NZ	2.25	0.51
2:2:217:LEU:O	2:2:219:LYS:N	2.44	0.51
3:3:93:LEU:O	3:3:97:ILE:HD12	2.10	0.51
4:4:334:UNK:O	4:4:338:UNK:N	2.44	0.51
4:4:396:PHE:CE1	5:5:185:LEU:HB3	2.46	0.51
5:5:571:THR:O	5:5:575:ILE:HG13	2.11	0.51

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:5:281:UNK:CB	5:5:321:GLY:HA3	2.41	0.51
1:1:34:GLN:HE21	9:C:201:THR:HA	1.76	0.51
16:Z:13:UNK:O	16:Z:17:UNK:N	2.44	0.51
1:1:189:UNK:O	1:1:193:SER:OG	2.28	0.51
2:2:214:ILE:HD12	2:2:268:LEU:CD2	2.40	0.51
4:4:228:HIS:CE1	4:4:287:LEU:HD13	2.46	0.51
2:2:163:ILE:O	2:2:166:ILE:HG22	2.11	0.50
2:2:354:UNK:CA	2:2:361:VAL:HG21	2.40	0.50
1:1:198:ALA:HB3	1:1:235:ILE:HD11	1.93	0.50
3:3:72:THR:O	3:3:76:TYR:CD2	2.65	0.50
4:4:142:GLU:HA	4:4:145:LEU:HD13	1.93	0.50
13:I:179:CYS:HA	50:I:501:SF4:S2	2.51	0.50
2:2:57:GLU:O	2:2:121:ASN:HB3	2.12	0.50
5:5:112:HIS:O	5:5:114:VAL:N	2.45	0.50
9:C:180:ILE:HG13	9:C:347:ILE:HD12	1.93	0.50
3:3:69:GLU:HG2	3:3:95:LEU:HD22	1.94	0.50
4:4:225:PHE:CE1	4:4:287:LEU:HD12	2.46	0.50
9:C:388:TYR:HD1	13:I:139:ILE:HG21	1.77	0.50
5:5:136:TYR:H	5:5:196:UNK:HA	1.77	0.50
6:6:154:LEU:HD22	6:6:162:LEU:HB2	1.93	0.50
15:L:47:PHE:O	15:L:48:ASP:HB2	2.11	0.50
9:C:394:VAL:O	9:C:418:GLY:HA2	2.11	0.50
4:4:391:ASN:O	4:4:395:GLU:HB2	2.12	0.50
14:K:76:PHE:HB2	14:K:116:ILE:HD13	1.94	0.50
1:1:43:GLY:HA3	1:1:44:TYR:C	2.32	0.49
4:4:373:ALA:O	4:4:376:ILE:HG22	2.11	0.49
1:1:243:GLY:HA2	1:1:247:LEU:HB2	1.93	0.49
4:4:297:ASP:OD1	4:4:299:LYS:HG3	2.11	0.49
8:B:410:GLU:HA	8:B:413:MET:HB2	1.93	0.49
1:1:154:PHE:HZ	1:1:241:PHE:HE1	1.56	0.49
2:2:294:GLY:O	2:2:297:MET:HB2	2.13	0.49
2:2:296:MET:SD	2:2:313:ILE:HG12	2.52	0.49
9:C:279:GLY:H	9:C:445:HIS:HE1	1.57	0.49
15:L:39:ILE:HG13	15:L:40:LEU:N	2.27	0.49
1:1:145:SER:HB3	1:1:312:CYS:SG	2.52	0.49
1:1:281:ALA:O	1:1:285:LYS:HG2	2.12	0.49
2:2:235:TYR:O	2:2:239:ILE:HG13	2.12	0.49
5:5:92:ILE:CD1	5:5:127:MET:HG2	2.42	0.49
9:C:379:GLU:O	9:C:383:HIS:HB2	2.11	0.49
1:1:191:ILE:HG23	1:1:293:PHE:HE1	1.77	0.49
2:2:234:ILE:HG12	2:2:324:PHE:CD1	2.48	0.49

A 4 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:2:350:UNK:O	2:2:420:UNK:HA	2.12	0.49
25:S:1133:UNK:O	25:S:1137:UNK:N	2.45	0.49
38:AN:3124:UNK:C	38:AN:3126:UNK:N	2.76	0.49
2:2:212:ILE:HG12	2:2:244:ILE:HG21	1.94	0.49
2:2:266:LEU:HD21	2:2:398:ILE:HG23	1.94	0.49
3:3:90:ILE:HA	3:3:93:LEU:HD12	1.93	0.49
14:K:126:LYS:O	14:K:129:PRO:HD2	2.13	0.49
1:1:151:THR:HA	1:1:154:PHE:HD2	1.78	0.49
2:2:118:UNK:HA	2:2:247:TYR:HB2	1.94	0.49
4:4:170:PHE:O	4:4:220:VAL:HG11	2.13	0.49
9:C:294:PRO:HA	9:C:297:ARG:HG3	1.95	0.49
1:1:143:LEU:HD23	1:1:197:THR:HG22	1.95	0.48
28:V:1417:UNK:C	28:V:1419:UNK:N	2.76	0.48
1:1:321:PHE:HA	1:1:324:PHE:CE2	2.47	0.48
3:3:96:LEU:O	3:3:100:ILE:HG13	2.13	0.48
4:4:290:LEU:HB3	5:5:573:GLY:HA2	1.95	0.48
5:5:173:MET:CB	5:5:235:TRP:HD1	2.18	0.48
9:C:446:PHE:HB3	9:C:448:PRO:HD2	1.95	0.48
1:1:321:PHE:HA	1:1:324:PHE:CD2	2.48	0.48
2:2:172:ILE:HD13	2:2:173:ASN:N	2.29	0.48
11:G:160:UNK:C	11:G:162:UNK:H	2.24	0.48
11:G:180:ARG:HH11	11:G:197:ARG:HB3	1.77	0.48
4:4:403:PHE:HA	4:4:410:UNK:CB	2.44	0.48
15:L:37:ASN:HD21	15:L:59:ILE:HB	1.78	0.48
25:S:1161:UNK:HA	25:S:1162:UNK:C	2.43	0.48
5:5:115:ARG:HB3	5:5:156:PHE:HZ	1.78	0.48
2:2:375:PRO:O	2:2:380:PHE:HB2	2.13	0.48
4:4:292:THR:CG2	4:4:304:TYR:HB3	2.44	0.48
8:B:385:THR:N	8:B:386:PRO:HD2	2.28	0.48
1:1:152:SER:HB3	1:1:324:PHE:CZ	2.47	0.48
6:6:165:LEU:HA	6:6:168:VAL:HG12	1.95	0.48
20:N:522:UNK:HA	20:N:524:UNK:N	2.28	0.48
2:2:1:MET:HG2	2:2:4:LEU:HD22	1.94	0.47
5:5:187:VAL:HG21	5:5:214:LEU:HD22	1.96	0.47
2:2:138:TYR:HB2	2:2:157:TYR:HB3	1.95	0.47
2:2:153:ALA:HB1	2:2:224:ILE:HG12	1.95	0.47
1:1:323:ILE:O	1:1:326:ILE:HG13	2.15	0.47
3:3:71:SER:O	3:3:75:PRO:HD3	2.13	0.47
4:4:225:PHE:CD1	4:4:283:LEU:HB3	2.49	0.47
4:4:292:THR:HG22	4:4:304:TYR:HB3	1.95	0.47
7:A:486:UNK:O	7:A:490:UNK:N	2.47	0.47

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:2:46:PHE:HB3	2:2:62:ASN:HB3	1.96	0.47
2:2:47:LEU:HB2	2:2:50:GLN:HG3	1.95	0.47
4:4:255:LEU:HG	4:4:317:VAL:HG21	1.97	0.47
9:C:293:GLY:HA2	9:C:296:LEU:N	2.26	0.47
1:1:295:TRP:HE3	13:I:87:LEU:HD22	1.78	0.47
2:2:295:TYR:CE1	2:2:402:LEU:HG	2.50	0.47
4:4:323:LEU:HD11	4:4:401:GLY:HA3	1.96	0.47
13:I:137:GLU:HA	13:I:144:ALA:HB3	1.96	0.47
1:1:226:PHE:HE1	3:3:16:PHE:HB3	1.79	0.47
2:2:67:TYR:HE1	2:2:314:THR:HG21	1.77	0.47
16:D:108:UNK:HA	16:D:109:UNK:HA	1.75	0.47
2:2:138:TYR:HE1	15:L:73:LEU:HD13	1.78	0.47
5:5:79:PHE:CE1	5:5:138:VAL:HG11	2.50	0.47
2:2:131:GLU:HB3	15:L:62:LEU:HD21	1.97	0.47
3:3:76:TYR:O	3:3:80:ILE:HG23	2.15	0.47
3:3:99:ILE:HA	3:3:102:PHE:HD2	1.80	0.47
6:6:29:PRO:O	6:6:33:ILE:HG13	2.15	0.47
4:4:228:HIS:O	4:4:231:LEU:HB2	2.15	0.46
5:5:153:LEU:HB3	5:5:246:VAL:HG11	1.97	0.46
1:1:30:LEU:HD23	1:1:298:ALA:HB2	1.97	0.46
2:2:245:LEU:O	2:2:249:VAL:HG23	2.15	0.46
2:2:279:ILE:HB	2:2:280:LYS:HE2	1.95	0.46
3:3:97:ILE:HG22	6:6:170:LEU:HD11	1.96	0.46
4:4:298:LEU:HD21	4:4:357:UNK:O	2.14	0.46
5:5:468:PHE:HA	5:5:472:ALA:HB3	1.96	0.46
9:C:92:PRO:HG2	9:C:98:LEU:HD13	1.97	0.46
2:2:295:TYR:O	2:2:298:LEU:HB2	2.16	0.46
4:4:312:ILE:HG12	4:4:399:LEU:HD13	1.97	0.46
5:5:99:VAL:HG11	5:5:249:LEU:HD13	1.96	0.46
11:G:168:ILE:HG23	11:G:171:LEU:HD23	1.98	0.46
2:2:372:ILE:HB	2:2:410:ALA:HB2	1.97	0.46
4:4:222:THR:HB	4:4:314:ILE:HD11	1.96	0.46
4:4:229:VAL:HG13	5:5:584:LEU:HG	1.98	0.46
4:4:263:LEU:O	4:4:267:CYS:SG	2.69	0.46
5:5:322:LEU:O	5:5:323:SER:HB2	2.14	0.46
13:I:171:TYR:HA	50:I:500:SF4:S1	2.55	0.46
5:5:589:PRO:HA	5:5:592:ILE:HB	1.97	0.46
13:I:179:CYS:SG	13:I:183:ALA:HB3	2.55	0.46
14:K:84:ALA:HB3	50:K:500:SF4:S4	2.56	0.46
1:1:28:LYS:HG2	1:1:39:PRO:HD2	1.97	0.46
1:1:196:GLU:HG3	1:1:308:LEU:HD11	1.97	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:1:301:UNK:C	9:C:198:GLY:HA2	2.46	0.46
2:2:239:ILE:HG13	2:2:239:ILE:H	1.48	0.46
4:4:178:MET:HB2	4:4:217:ALA:CB	2.43	0.46
4:4:294:ARG:O	4:4:296:ILE:N	2.49	0.46
4:4:456:ILE:HG23	4:4:457:LEU:HD23	1.98	0.46
5:5:221:ILE:HA	5:5:224:MET:HG2	1.98	0.46
9:C:190:VAL:HG21	9:C:340:PHE:HE2	1.81	0.46
14:K:93:VAL:HG21	14:K:187:LEU:HD23	1.98	0.46
3:3:98:LEU:HD22	6:6:170:LEU:HD22	1.97	0.46
5:5:33:UNK:CB	5:5:114:VAL:HG13	2.46	0.46
5:5:361:UNK:HA	5:5:434:LEU:HD23	1.96	0.46
9:C:200:LEU:HD23	9:C:200:LEU:H	1.80	0.46
15:L:16:VAL:HA	15:L:17:PHE:C	2.36	0.46
2:2:235:TYR:CE1	2:2:239:ILE:HG12	2.51	0.46
2:2:8:SER:O	2:2:12:PHE:HD2	1.98	0.46
2:2:351:UNK:HA	2:2:419:UNK:O	2.16	0.46
4:4:295:GLN:HG3	4:4:300:VAL:HG12	1.97	0.46
2:2:149:LYS:HB3	2:2:227:ASN:HA	1.97	0.45
2:2:384:LEU:O	2:2:388:MET:HB2	2.15	0.45
5:5:180:PHE:HB3	5:5:222:ALA:HB2	1.98	0.45
7:A:370:UNK:HA	7:A:371:UNK:CB	2.46	0.45
9:C:139:PHE:CZ	9:C:427:ILE:HG12	2.52	0.45
1:1:196:GLU:HA	1:1:201:PRO:HG3	1.98	0.45
5:5:62:UNK:N	5:5:79:PHE:O	2.49	0.45
5:5:83:ALA:O	5:5:86:ILE:HG13	2.16	0.45
1:1:166:ILE:HA	1:1:169:ILE:HD12	1.98	0.45
3:3:80:ILE:HB	3:3:81:TYR:H	1.56	0.45
4:4:230:TRP:CE3	4:4:234:VAL:HG21	2.51	0.45
5:5:143:TRP:HZ2	5:5:223:ALA:HA	1.80	0.45
8:B:94:SER:HA	8:B:97:LYS:HB3	1.98	0.45
3:3:53:UNK:O	3:3:55:UNK:N	2.49	0.45
5:5:478:UNK:HA	5:5:479:UNK:C	2.46	0.45
9:C:368:SER:C	9:C:370:PRO:HD3	2.37	0.45
14:K:112:ARG:HA	14:K:139:PRO:HD3	1.99	0.45
2:2:206:LEU:HA	2:2:209:LEU:HD12	1.98	0.45
3:3:19:UNK:O	3:3:21:UNK:N	2.50	0.45
3:3:60:ALA:O	6:6:70:LEU:HD21	2.17	0.45
4:4:224:LEU:HD23	4:4:284:THR:HG21	1.98	0.45
5:5:188:ILE:O	5:5:191:VAL:HG12	2.16	0.45
1:1:304:UNK:O	1:1:306:ASP:N	2.49	0.45
5:5:357:UNK:C	5:5:359:UNK:N	2.80	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:1:196:GLU:HA	1:1:201:PRO:CG	2.47	0.45
2:2:262:ILE:HG23	2:2:301:LEU:CD2	2.47	0.45
4:4:162:ARG:O	4:4:166:TYR:HB2	2.16	0.45
11:G:180:ARG:HB3	11:G:199:ILE:HD11	1.98	0.45
12:H:131:PRO:HD2	49:H:300:FES:S2	2.56	0.45
1:1:34:GLN:HB3	9:C:204:LEU:HD22	1.99	0.45
4:4:240:LEU:CD1	4:4:344:UNK:HA	2.46	0.45
6:6:44:ALA:HB1	6:6:56:SER:HB3	1.98	0.45
1:1:218:GLU:O	1:1:220:UNK:N	2.49	0.45
3:3:77:VAL:O	3:3:80:ILE:HG13	2.16	0.45
5:5:383:SER:HB3	5:5:391:THR:HG22	1.99	0.45
8:B:398:UNK:CB	8:B:414:LEU:HD22	2.47	0.45
2:2:298:LEU:HD21	2:2:398:ILE:HG22	1.99	0.45
4:4:323:LEU:CD1	4:4:401:GLY:HA3	2.47	0.45
5:5:189:ALA:O	5:5:193:GLY:N	2.48	0.45
9:C:212:LYS:HD3	9:C:250:TRP:HD1	1.82	0.45
3:3:106:UNK:O	3:3:107:UNK:O	2.35	0.44
9:C:279:GLY:HA2	9:C:453:ILE:HD11	1.99	0.44
1:1:230:ALA:O	1:1:234:ASN:HB2	2.17	0.44
2:2:64:PHE:CE2	2:2:250:LEU:HD13	2.52	0.44
5:5:228:ALA:HB2	5:5:235:TRP:HB3	1.99	0.44
9:C:183:VAL:HG11	9:C:250:TRP:HZ2	1.81	0.44
2:2:278:GLN:HG2	2:2:280:LYS:HE3	1.98	0.44
2:2:310:LEU:O	2:2:314:THR:HG23	2.16	0.44
4:4:161:GLU:O	4:4:165:PHE:CD1	2.69	0.44
4:4:265:LEU:CG	4:4:266:LEU:N	2.74	0.44
4:4:452:PHE:HA	4:4:455:ASN:HB2	1.98	0.44
5:5:101:ILE:HD12	5:5:461:PRO:HB3	1.99	0.44
11:G:99:UNK:CB	11:G:156:UNK:HA	2.47	0.44
5:5:123:PHE:CE1	5:5:253:ALA:HB2	2.53	0.44
1:1:29:THR:HB	1:1:294:ILE:HG21	1.99	0.44
1:1:210:GLU:HG2	1:1:211:LEU:HG	1.98	0.44
2:2:302:LEU:HD23	2:2:303:ASN:N	2.33	0.44
3:3:82:LEU:CB	3:3:83:VAL:HB	2.46	0.44
13:I:187:THR:HB	13:I:188:PRO:HD3	1.98	0.44
2:2:166:ILE:CD1	15:L:33:LEU:HG	2.48	0.44
5:5:166:SER:HB2	5:5:238:LEU:O	2.17	0.44
5:5:634:VAL:O	5:5:638:ASN:N	2.51	0.44
9:C:407:LYS:HE3	9:C:458:ASP:OD1	2.18	0.44
5:5:339:LYS:HD2	5:5:339:LYS:HA	1.73	0.44
5:5:480:UNK:HA	5:5:481:UNK:HA	1.79	0.44

A 4 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
15:L:33:LEU:O	15:L:36:ILE:HG22	2.18	0.44
6:6:147:LEU:C	6:6:149:THR:H	2.21	0.44
4:4:259:LEU:HD12	4:4:260:ARG:HD2	1.99	0.43
5:5:318:ILE:O	5:5:322:LEU:HB2	2.18	0.43
6:6:79:ASP:HB3	15:L:78:TYR:OH	2.18	0.43
13:I:160:THR:HG23	13:I:161:LYS:HG2	2.01	0.43
28:V:1403:UNK:C	28:V:1405:UNK:N	2.81	0.43
2:2:159:PHE:O	2:2:163:ILE:HG13	2.18	0.43
9:C:185:ASN:HB3	9:C:406:PRO:HG2	1.99	0.43
16:D:134:UNK:O	16:D:136:UNK:N	2.51	0.43
1:1:194:VAL:HG22	1:1:238:ILE:HG12	2.00	0.43
4:4:76:UNK:H	4:4:139:ILE:HD11	1.83	0.43
6:6:96:LEU:HD22	6:6:96:LEU:H	1.84	0.43
9:C:388:TYR:CD1	13:I:178:SER:HB3	2.52	0.43
6:6:71:PHE:HA	6:6:74:ILE:HG22	1.99	0.43
8:B:48:UNK:HA	8:B:132:ASP:OD1	2.18	0.43
2:2:211:LYS:O	2:2:221:LEU:HD11	2.18	0.43
2:2:310:LEU:HD13	2:2:310:LEU:HA	1.92	0.43
4:4:468:PRO:HB2	4:4:471:MET:HG2	2.00	0.43
6:6:13:ILE:H	6:6:13:ILE:HG13	1.63	0.43
6:6:27:LYS:HA	6:6:28:ASN:HA	1.42	0.43
15:L:23:ILE:H	15:L:23:ILE:HG13	1.56	0.43
30:BH:5106:UNK:O	30:BH:5108:UNK:N	2.52	0.43
2:2:287:PHE:O	2:2:291:THR:HG23	2.18	0.43
4:4:460:SER:HA	4:4:463:ILE:HD12	2.01	0.43
5:5:151:TYR:HB2	5:5:171:VAL:CG2	2.39	0.43
6:6:95:PRO:HG2	6:6:96:LEU:HD22	2.00	0.43
9:C:191:CYS:SG	9:C:206:GLY:HA3	2.59	0.43
14:K:61:LEU:HA	14:K:63:THR:N	2.31	0.43
16:D:107:UNK:HA	16:D:108:UNK:HA	1.72	0.43
45:AZ:4325:UNK:C	45:AZ:4327:UNK:H	2.30	0.43
2:2:211:LYS:HB2	2:2:244:ILE:HG21	2.01	0.43
3:3:62:LEU:C	3:3:65:PRO:HD2	2.38	0.43
4:4:165:PHE:CD1	4:4:165:PHE:N	2.86	0.43
5:5:175:ARG:HA	5:5:178:ASP:HB2	2.01	0.43
5:5:255:UNK:O	5:5:332:LEU:HD11	2.19	0.43
1:1:41:PHE:O	1:1:43:GLY:N	2.52	0.43
2:2:213:GLY:O	2:2:218:HIS:HA	2.19	0.43
8:B:409:ARG:O	8:B:413:MET:N	2.52	0.43
9:C:174:ARG:HH21	9:C:234:GLY:HA2	1.84	0.43
3:3:99:ILE:O	3:3:103:VAL:HG22	2.19	0.42

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:4:260:ARG:NE	4:4:260:ARG:HA	2.33	0.42
8:B:336:UNK:O	8:B:340:UNK:N	2.51	0.42
11:G:202:ASP:HA	14:K:126:LYS:HD2	2.01	0.42
20:N:519:UNK:HA	20:N:520:UNK:HA	1.84	0.42
2:2:7:ILE:HG13	2:2:7:ILE:H	1.50	0.42
2:2:399:SER:O	2:2:402:LEU:HB3	2.19	0.42
3:3:95:LEU:O	3:3:98:LEU:HB2	2.18	0.42
5:5:136:TYR:O	5:5:140:PHE:HD2	2.01	0.42
7:A:184:ILE:HG22	7:A:184:ILE:O	2.19	0.42
2:2:238:LEU:HD22	2:2:320:HIS:CE1	2.55	0.42
4:4:113:UNK:O	4:4:117:UNK:CB	2.68	0.42
11:G:165:VAL:O	11:G:190:PHE:HA	2.19	0.42
12:H:218:UNK:O	12:H:219:UNK:C	2.66	0.42
3:3:82:LEU:HB2	3:3:83:VAL:HB	2.01	0.42
4:4:180:LEU:O	4:4:184:VAL:HG23	2.19	0.42
8:B:385:THR:HG22	8:B:388:ARG:HH12	1.83	0.42
9:C:97:VAL:HG13	9:C:98:LEU:H	1.85	0.42
9:C:337:MET:O	9:C:340:PHE:HB2	2.19	0.42
1:1:21:TYR:HE2	1:1:47:LEU:HD22	1.84	0.42
1:1:326:ILE:CG2	23:Q:933:UNK:CB	2.97	0.42
2:2:66:PHE:HD2	2:2:70:MET:HE1	1.84	0.42
2:2:368:VAL:O	2:2:372:ILE:HG23	2.19	0.42
2:2:373:GLY:O	2:2:375:PRO:HD3	2.20	0.42
4:4:289:SER:O	4:4:292:THR:OG1	2.37	0.42
9:C:305:ILE:HB	9:C:404:GLU:HB2	2.01	0.42
2:2:74:PHE:O	2:2:78:VAL:HG23	2.19	0.42
4:4:208:THR:HA	4:4:269:ALA:HB2	2.02	0.42
9:C:311:TYR:HB2	9:C:312:ASP:H	1.73	0.42
9:C:337:MET:HA	9:C:340:PHE:CD2	2.43	0.42
11:G:123:UNK:HA	11:G:132:UNK:CB	2.49	0.42
21:O:615:UNK:C	21:O:617:UNK:N	2.83	0.42
1:1:152:SER:O	1:1:156:ILE:HG23	2.19	0.42
3:3:77:VAL:HA	3:3:88:PHE:HZ	1.85	0.42
11:G:193:HIS:HA	11:G:194:PRO:HD3	1.97	0.42
33:AC:2035:UNK:C	33:AC:2037:UNK:N	2.83	0.42
12:H:129:THR:HG21	12:H:168:CYS:HB2	2.01	0.42
29:W:1504:UNK:O	29:W:1506:UNK:N	2.53	0.42
2:2:71:LEU:O	2:2:75:ILE:HD12	2.19	0.42
4:4:214:LEU:HD23	4:4:261:LEU:HB3	2.01	0.42
6:6:63:TYR:HE2	15:L:34:LEU:HB2	1.85	0.42
9:C:465:ASP:HA	11:G:200:MET:HE3	2.01	0.42

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:2:140:ILE:HD13	2:2:235:TYR:HE2	1.85	0.42
2:2:153:ALA:HA	2:2:156:LEU:HB2	2.01	0.42
2:2:236:ILE:O	2:2:240:PRO:HD2	2.19	0.42
2:2:238:LEU:HD22	2:2:320:HIS:ND1	2.35	0.42
6:6:13:ILE:HG12	15:L:3:ILE:HG12	2.01	0.42
2:2:281:ILE:HD12	2:2:326:ILE:HD11	2.02	0.41
4:4:153:HIS:HB2	4:4:164:SER:OG	2.20	0.41
16:Z:55:UNK:N	16:Z:56:UNK:HA	2.35	0.41
1:1:148:LEU:HD21	3:3:70:ILE:HD13	2.01	0.41
2:2:61:PHE:HB3	2:2:64:PHE:HE2	1.85	0.41
6:6:145:THR:HA	6:6:146:LEU:HA	1.89	0.41
7:A:185:HIS:HB2	8:B:388:ARG:NH1	2.34	0.41
9:C:184:LEU:HD12	9:C:213:LEU:HB2	2.02	0.41
9:C:208:GLU:H	9:C:208:GLU:HG3	1.75	0.41
5:5:370:LEU:HB2	5:5:373:THR:OG1	2.19	0.41
7:A:188:ARG:HB2	50:A:902:SF4:S3	2.59	0.41
11:G:168:ILE:CG2	11:G:171:LEU:HB3	2.50	0.41
11:G:190:PHE:HB2	11:G:196:LEU:HD21	2.02	0.41
13:I:140:CYS:CB	13:I:144:ALA:HB2	2.50	0.41
1:1:56:LYS:HG3	14:K:72:ARG:HG2	2.02	0.41
2:2:180:ASN:HA	15:L:47:PHE:CE2	2.45	0.41
4:4:165:PHE:HD1	4:4:165:PHE:H	1.68	0.41
9:C:258:LEU:CD1	9:C:340:PHE:HB3	2.50	0.41
9:C:318:ASP:HB2	9:C:349:GLN:HE22	1.84	0.41
13:I:176:GLN:CA	13:I:184:ILE:HG23	2.46	0.41
2:2:75:ILE:HD13	2:2:242:ILE:CD1	2.50	0.41
2:2:139:LEU:HD23	6:6:179:ILE:HD12	2.01	0.41
4:4:171:THR:HG22	4:4:221:LYS:HE3	2.02	0.41
7:A:186:CYS:SG	7:A:188:ARG:HG3	2.60	0.41
9:C:216:PHE:HE1	9:C:243:LEU:HD12	1.86	0.41
9:C:343:SER:O	9:C:347:ILE:HG12	2.20	0.41
11:G:72:HIS:HA	11:G:89:PHE:HE2	1.84	0.41
21:O:647:UNK:O	21:O:651:UNK:N	2.53	0.41
1:1:27:ARG:HD2	1:1:39:PRO:HG3	2.01	0.41
2:2:209:LEU:HB3	2:2:214:ILE:HG12	2.03	0.41
11:G:190:PHE:O	11:G:196:LEU:HD11	2.21	0.41
13:I:132:ALA:HA	13:I:159:THR:HG23	2.02	0.41
3:3:91:VAL:HG13	6:6:166:ALA:HB2	2.03	0.41
4:4:468:PRO:CB	4:4:471:MET:HG2	2.51	0.41
5:5:494:UNK:O	5:5:497:UNK:O	2.38	0.41
19:M:414:UNK:C	19:M:416:UNK:N	2.82	0.41

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
19:M:421:UNK:O	19:M:426:UNK:N	2.54	0.41
1:1:199:ARG:HH21	1:1:231:GLU:HG2	1.86	0.41
3:3:40:UNK:HA	14:K:133:GLN:HB3	2.03	0.41
4:4:145:LEU:HD23	4:4:168:LEU:HD12	2.02	0.41
9:C:95:HIS:CG	9:C:96:GLY:N	2.84	0.41
16:D:114:UNK:C	16:D:116:UNK:N	2.84	0.41
1:1:152:SER:O	1:1:155:ILE:HG13	2.21	0.41
1:1:315:ILE:C	1:1:318:PRO:HD2	2.41	0.41
2:2:403:ILE:HD11	4:4:180:LEU:HB2	2.01	0.41
5:5:211:LEU:O	5:5:215:ILE:HD12	2.21	0.41
6:6:18:LEU:O	6:6:21:ILE:HG22	2.20	0.41
13:I:170:ILE:O	13:I:170:ILE:HG22	2.21	0.41
18:J:352:UNK:C	18:J:354:UNK:N	2.84	0.41
3:3:69:GLU:HG3	6:6:169:LEU:HD22	2.02	0.41
9:C:90:GLN:O	9:C:92:PRO:HD3	2.20	0.41
15:L:71:LEU:O	15:L:75:VAL:HG23	2.21	0.41
1:1:148:LEU:HD22	1:1:317:LEU:HD11	2.03	0.40
5:5:140:PHE:CD1	5:5:181:PHE:CD2	3.09	0.40
6:6:70:LEU:HB3	15:L:71:LEU:CD2	2.50	0.40
13:I:184:ILE:O	13:I:184:ILE:CG2	2.64	0.40
2:2:247:TYR:CA	2:2:250:LEU:HD23	2.32	0.40
8:B:97:LYS:HA	8:B:100:PHE:HD2	1.86	0.40
9:C:305:ILE:HD11	9:C:409:GLU:HG3	2.03	0.40
14:K:83:LEU:HB2	14:K:121:GLY:HA3	2.04	0.40
15:L:5:THR:HA	15:L:8:LEU:HD12	2.03	0.40
2:2:130:ILE:HG13	2:2:211:LYS:HE2	2.03	0.40
2:2:142:ALA:CB	6:6:179:ILE:HD11	2.50	0.40
6:6:165:LEU:HD23	6:6:168:VAL:HG11	2.02	0.40
9:C:148:MET:H	9:C:181:THR:HG21	1.85	0.40
9:C:287:LEU:HD22	11:G:117:UNK:CB	2.51	0.40
46:BC:4609:UNK:O	46:BC:4613:UNK:N	2.54	0.40
2:2:212:ILE:H	2:2:212:ILE:HG13	1.45	0.40
4:4:79:UNK:HA	4:4:131:UNK:HA	2.04	0.40
4:4:294:ARG:HB2	5:5:574:ASN:HA	2.02	0.40
6:6:92:ARG:O	6:6:95:PRO:HD2	2.22	0.40
9:C:342:GLN:O	9:C:346:ILE:HG12	2.22	0.40
2:2:266:LEU:HD22	2:2:401:VAL:HG11	2.02	0.40
4:4:236:SER:HB2	4:4:299:LYS:HD2	2.03	0.40
4:4:373:ALA:O	4:4:377:ILE:HG12	2.22	0.40
5:5:323:SER:O	5:5:325:TYR:N	2.55	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perc	entiles
1	1	202/327~(62%)	166 (82%)	30 (15%)	6 (3%)	4	33
2	2	320/438~(73%)	278 (87%)	31 (10%)	11 (3%)	3	31
3	3	64/89~(72%)	54 (84%)	7 (11%)	3 (5%)	2	22
4	4	243/470~(52%)	212 (87%)	24 (10%)	7 (3%)	4	33
5	5	356/619~(58%)	295 (83%)	46 (13%)	15 (4%)	3	25
6	6	141/185 (76%)	118 (84%)	14 (10%)	9 (6%)	1	17
7	А	63/628~(10%)	55 (87%)	5 (8%)	3 (5%)	2	22
8	В	72/370~(20%)	67 (93%)	5 (7%)	0	100	100
9	С	348/444~(78%)	303 (87%)	27 (8%)	18 (5%)	2	20
11	G	65/133~(49%)	55 (85%)	8 (12%)	2 (3%)	4	32
12	Н	30/154~(20%)	28 (93%)	1 (3%)	1 (3%)	4	31
13	Ι	64/137~(47%)	47 (73%)	11 (17%)	6 (9%)	0	8
14	К	141/183 (77%)	126 (89%)	12 (8%)	3 (2%)	7	40
15	L	87/89~(98%)	72 (83%)	6 (7%)	9 (10%)	0	7
All	All	2196/4266 (52%)	1876 (85%)	227 (10%)	93 (4%)	3	25

All (93) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	1	42	VAL
1	1	44	TYR
1	1	45	TYR
1	1	199	ARG
1	1	212	VAL
1	1	217	THR
2	2	43	TYR
2	2	123	PHE
2	2	218	HIS

3 3 83 VAL 4 4 158 SER 4 4 203 SER 4 4 208 THR 4 4 295 GLN 5 5 113 GLN 5 5 620 LEU 6 6 9 ILE 6 6 80 ILE 6 6 80 ILE 6 6 90 ASN 9 C 97 VAL 9 C 98 LEU 9 C 239 LEU 9 C 294 PRO 9 C 294 PRO 9 C 368 SER 11 G 191 GLU 13 I 139 ILE 13 I 179 CYS 13 I 179 CYS 13 I 182 ASP 14 <t< th=""></t<>
4 4 158 SER 4 4 203 SER 4 4 208 THR 4 4 295 GLN 5 5 113 GLN 5 5 620 LEU 6 6 9 ILE 6 6 28 ASN 6 6 80 ILE 6 6 90 ASN 9 C 97 VAL 9 C 98 LEU 9 C 239 LEU 9 C 240 PRO 9 C 240 PRO 9 C 368 SER 11 G 191 GLU 13 I 139 ILE 13 I 179 CYS 13 I 182 ASP 14 K 57 VAL 14 K 60 THR 14 K 203 ILE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5 5 620 LEU 6 6 9 ILE 6 6 28 ASN 6 6 80 ILE 6 6 90 ASN 9 C 97 VAL 9 C 98 LEU 9 C 239 LEU 9 C 240 PRO 9 C 294 PRO 9 C 368 SER 11 G 191 GLU 13 I 139 ILE 13 I 140 CYS 13 I 179 CYS 13 I 182 ASP 14 K 57 VAL 14 K 60 THR 14 K 203 ILE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
6 6 90 ASN 9 C 97 VAL 9 C 98 LEU 9 C 239 LEU 9 C 240 PRO 9 C 294 PRO 9 C 368 SER 11 G 191 GLU 13 I 139 ILE 13 I 140 CYS 13 I 179 CYS 13 I 182 ASP 14 K 57 VAL 14 K 203 ILE
9 C 97 VAL 9 C 98 LEU 9 C 239 LEU 9 C 240 PRO 9 C 294 PRO 9 C 368 SER 11 G 191 GLU 13 I 139 ILE 13 I 179 CYS 13 I 182 ASP 14 K 57 VAL 14 K 203 ILE
9 C 98 LEU 9 C 239 LEU 9 C 240 PRO 9 C 294 PRO 9 C 368 SER 11 G 191 GLU 13 I 139 ILE 13 I 179 CYS 13 I 182 ASP 14 K 57 VAL 14 K 203 ILE
9 C 239 LEU 9 C 240 PRO 9 C 294 PRO 9 C 368 SER 11 G 191 GLU 13 I 139 ILE 13 I 140 CYS 13 I 179 CYS 13 I 182 ASP 14 K 57 VAL 14 K 60 THR 14 K 203 ILE
9 C 240 PRO 9 C 294 PRO 9 C 368 SER 11 G 191 GLU 13 I 139 ILE 13 I 179 CYS 13 I 179 CYS 13 I 182 ASP 14 K 57 VAL 14 K 203 ILE
9 C 294 PRO 9 C 368 SER 11 G 191 GLU 13 I 139 ILE 13 I 140 CYS 13 I 179 CYS 13 I 182 ASP 14 K 57 VAL 14 K 203 ILE
9 C 368 SER 11 G 191 GLU 13 I 139 ILE 13 I 140 CYS 13 I 179 CYS 13 I 182 ASP 14 K 57 VAL 14 K 60 THR 14 K 203 ILE
11 G 191 GLU 13 I 139 ILE 13 I 140 CYS 13 I 179 CYS 13 I 182 ASP 14 K 57 VAL 14 K 60 THR 14 K 203 ILE
13 I 139 ILE 13 I 140 CYS 13 I 179 CYS 13 I 182 ASP 14 K 57 VAL 14 K 60 THR 14 K 203 ILE
13 I 140 CYS 13 I 179 CYS 13 I 182 ASP 14 K 57 VAL 14 K 60 THR 14 K 203 ILE
13 I 179 CYS 13 I 182 ASP 14 K 57 VAL 14 K 60 THR 14 K 203 ILE
13 I 182 ASP 14 K 57 VAL 14 K 60 THR 14 K 203 ILE
14 K 57 VAL 14 K 60 THR 14 K 203 ILE
14 K 60 THR 14 K 203 ILE
14 K 203 ILE
15 L 22 ILE
15 L 50 ILE
15 L 86 SER
2 2 51 THR
2 2 62 ASN
2 2 230 ILE
2 2 327 ILE
5 5 235 TRP
5 5 324 ALA
5 5 396 LYS
5 5 649 ILE
5 5 653 LEU
6 6 149 THR
6 6 150 ILE
7 A 133 CYS
7 A 187 THR

Mol Chain Res Type 9 C 327 GLY 11 G 83 PRO 13 I 81 ALA 13 I 171 TYR 15 L 87 TYR 2 2 52 TYR 2 2 300 LEU 3 3 4 PHE 4 4 202 LEU 4 4 202 NAL 5 5 209 THR 5 5 619 MET 5 5 619 MET 5 5 639 PHE 6 6 81 ASN 7 A 134 ALA 9 C 362 GLU 9 C 362 GLU 9 C 362 GLU 9 C 3	001111		<u>e preou</u>	<u>puyc</u>
9 C 327 GLY 11 G 83 PRO 13 I 81 ALA 13 I 171 TYR 15 L 87 TYR 2 2 52 TYR 2 2 300 LEU 3 3 4 PHE 4 4 202 LEU 4 4 202 LEU 4 4 202 VAL 5 5 309 THR 5 5 619 MET 5 5 639 PHE 6 6 81 ASN 7 A 134 ALA 9 C 362 GLU 9 C 362 GLU 9 C 370 PRO 15 L 48 ASP 15 L 85	Mol	Chain	Res	Type
11 G 83 PRO 13 I 81 ALA 13 I 171 TYR 15 L 87 TYR 2 2 52 TYR 2 2 300 LEU 3 3 4 PHE 4 4 202 LEU 4 4 202 LEU 4 4 202 LEU 4 4 202 VAL 5 5 209 THR 5 5 619 MET 5 5 619 MET 5 5 639 PHE 6 6 81 ASN 7 A 134 ALA 9 C 362 GLU 9 C 362 GLU 9 C 370 PRO 15 L 48 ASP 15 L 85 ASN 5 <t< td=""><td>9</td><td>С</td><td>327</td><td>GLY</td></t<>	9	С	327	GLY
13 I 81 ALA 13 I 171 TYR 15 L 87 TYR 2 2 52 TYR 2 2 300 LEU 3 3 4 PHE 4 4 202 LEU 4 4 202 VAL 5 5 209 THR 5 5 323 SER 5 5 619 MET 5 5 639 PHE 6 6 81 ASN 7 A 134 ALA 9 C 362 GLU 9 C 362 GLU 9 C 362 GLU 9 C 370 PRO 15 L 48 ASP 15 L 85 ASN 5 5 133 GLY 5 5 346 ALA 6 <t< td=""><td>11</td><td>G</td><td>83</td><td>PRO</td></t<>	11	G	83	PRO
13 I 171 TYR 15 L 87 TYR 2 2 52 TYR 2 2 300 LEU 3 3 4 PHE 4 4 202 LEU 4 4 202 VAL 5 5 209 THR 5 5 323 SER 5 5 619 MET 5 5 639 PHE 6 6 81 ASN 7 A 134 ALA 9 C 362 GLU 9 C 362 GLU 9 C 362 GLU 9 C 362 GLU 9 C 370 PRO 15 L 48 ASP 15 L 85 ASN 5 5 346 ALA 6 6 147 LEU 9 <t< td=""><td>13</td><td>Ι</td><td>81</td><td>ALA</td></t<>	13	Ι	81	ALA
15 L 87 TYR 2 2 52 TYR 2 2 300 LEU 3 3 4 PHE 4 4 202 LEU 4 4 229 VAL 5 5 209 THR 5 5 323 SER 5 5 619 MET 5 5 639 PHE 6 6 81 ASN 7 A 134 ALA 9 C 269 ARG 9 C 362 GLU 9 C 370 PRO 15 L 48 ASP 15 L 49 ASN 5 5 133 GLY 5 5 346 ALA 6 6 147 LEU 9 C 302 PRO 2 2 180	13	Ι	171	TYR
2 2 52 TYR 2 2 300 LEU 3 3 4 PHE 4 4 202 LEU 4 4 229 VAL 5 5 209 THR 5 5 323 SER 5 5 619 MET 5 5 639 PHE 6 6 81 ASN 7 A 134 ALA 9 C 269 ARG 9 C 362 GLU 9 C 362 GLU 9 C 370 PRO 15 L 48 ASP 15 L 85 ASN 5 5 133 GLY 5 5 346 ALA 6 6 147 LEU 9 C 302	15	L	87	TYR
2 2 300 LEU 3 3 4 PHE 4 4 202 LEU 4 4 229 VAL 5 5 209 THR 5 5 323 SER 5 5 619 MET 5 5 639 PHE 6 6 81 ASN 7 A 134 ALA 9 C 269 ARG 9 C 313 ALA 9 C 362 GLU 9 C 362 GLU 9 C 370 PRO 15 L 48 ASP 15 L 49 ASP 15 L 85 ASN 5 5 346 ALA 6 6 147 LEU 9 C 302 PRO 2 2 180 ASN	2	2	52	TYR
3 3 4 PHE 4 4 202 LEU 4 4 229 VAL 5 5 209 THR 5 5 323 SER 5 5 619 MET 5 5 639 PHE 6 6 81 ASN 7 A 134 ALA 9 C 269 ARG 9 C 362 GLU 9 C 362 GLU 9 C 362 GLU 9 C 370 PRO 15 L 48 ASP 15 L 49 ASN 5 5 133 GLY 5 5 346 ALA 6 6 147 LEU 9 C 302 PRO 2 2 180 <t< td=""><td>2</td><td>2</td><td>300</td><td>LEU</td></t<>	2	2	300	LEU
44202LEU44229VAL55209THR55323SER55619MET55639PHE6681ASN7A134ALA9C269ARG9C313ALA9C362GLU9C370PRO15L48ASP15L85ASN55133GLY55346ALA66147LEU9C302PRO22180ASN338ILE66181MET9C369PRO15L17PHE44225PHE55641ILE22162GLY12H130THR9C355PRO55634VAL15L88GLY	3	3	4	PHE
44229VAL55209THR55323SER55619MET55639PHE6681ASN7A134ALA9C269ARG9C362GLU9C362GLU9C370PRO15L48ASP15L85ASN55133GLY55346ALA66147LEU9C302PRO22180ASN338ILE66181MET9C201THR9C369PRO15L17PHE44225PHE55641ILE22162GLY12H130THR9C355PRO55634VAL15L88GLY	4	4	202	LEU
5 5 209 THR 5 5 323 SER 5 5 619 MET 5 5 639 PHE 6 6 81 ASN 7 A 134 ALA 9 C 269 ARG 9 C 362 GLU 9 C 362 ASN 15 L 48 ASP 15 L 85 ASN 5 5 133 GLY 5 5 346 ALA 6 6 147 LEU 9 C 302 PRO 2 2 180 ASN 3 3 8 ILE 6 <t< td=""><td>4</td><td>4</td><td>229</td><td>VAL</td></t<>	4	4	229	VAL
5 5 5 323 SER 5 5 619 MET 5 5 639 PHE 6 6 81 ASN 7 A 134 ALA 9 C 269 ARG 9 C 362 GLU 9 C 362 GLU 9 C 362 GLU 9 C 362 GLU 9 C 370 PRO 15 L 48 ASP 15 L 85 ASN 5 5 133 GLY 5 5 346 ALA 6 6 147 LEU 9 C 302 PRO 2 2 180 ASN 3 3 8 ILE 6 6 181 MET 9 C 201 THR 9 C 369 PRO <t< td=""><td>5</td><td>5</td><td>209</td><td>THR</td></t<>	5	5	209	THR
5 5 619 MET 5 5 639 PHE 6 6 81 ASN 7 A 134 ALA 9 C 269 ARG 9 C 362 GLU 9 C 362 GLU 9 C 370 PRO 15 L 48 ASP 15 L 49 ASP 15 L 85 ASN 5 5 133 GLY 5 5 346 ALA 6 6 147 LEU 9 C 302 PRO 2 2 180 ASN 3 3 8 ILE 9 C 101 ILE 9 C 201 THR 9 C 369 PRO 15 L 17 PHE 4 4 225 PHE 5 <t< td=""><td>5</td><td>5</td><td>323</td><td>SER</td></t<>	5	5	323	SER
5 5 639 PHE 6 6 81 ASN 7 A 134 ALA 9 C 269 ARG 9 C 313 ALA 9 C 362 GLU 9 C 370 PRO 15 L 48 ASP 15 L 49 ASP 15 L 85 ASN 5 5 133 GLY 5 5 346 ALA 6 6 147 LEU 9 C 302 PRO 2 2 180 ASN 3 3 8 ILE 6 6 181 MET 9 C 201 THR 9 C 369 PRO 15 L 17 PHE 4 4 225 PHE 5 5 641 ILE 2	5	5	619	MET
6 6 81 ASN 7 A 134 ALA 9 C 269 ARG 9 C 313 ALA 9 C 362 GLU 9 C 370 PRO 15 L 48 ASP 15 L 49 ASP 15 L 85 ASN 5 5 133 GLY 5 5 346 ALA 6 6 147 LEU 9 C 302 PRO 2 2 180 ASN 3 3 8 ILE 6 6 181 MET 9 C 101 ILE 9 C 369 PRO 15 L 17 PHE 4 4 225 PHE 5 5 641 ILE 2 2 162 GLY 12 H 130 THR 9 C 355 PRO 5 5 634 VAL 15 L 88 GLY	5	5	639	PHE
7A134ALA9C269ARG9C313ALA9C362GLU9C370PRO15L48ASP15L49ASP15L85ASN55133GLY55346ALA66147LEU9C302PRO22180ASN338ILE66181MET9C201THR9C369PRO15L17PHE44225PHE55641ILE22162GLY12H130THR9C355PRO55634VAL15L88GLY	6	6	81	ASN
9C 269 ARG9C 313 ALA9C 362 GLU9C 370 PRO15L 48 ASP15L 49 ASP15L 85 ASN55 133 GLY55 346 ALA66 147 LEU9C 302 PRO22 180 ASN338ILE66 181 MET9C 201 THR9C 369 PRO15L 17 PHE44 225 PHE5 5 641 ILE22 162 GLY12H 130 THR9C 234 GLY9C 355 PRO5 5 634 VAL15L 88 GLY	7	А	134	ALA
9C 313 ALA9C 362 GLU9C 370 PRO15L48ASP15L49ASP15L85ASN55133GLY55346ALA66147LEU9C302PRO22180ASN338ILE66181MET9C201THR9C369PRO15L17PHE44225PHE55641ILE22162GLY12H130THR9C355PRO55634VAL15L88GLY	9	С	269	ARG
9C 362 GLU9C 370 PRO15L 48 ASP15L 49 ASP15L 85 ASN55 133 GLY55 346 ALA66 147 LEU9C 302 PRO22 180 ASN338ILE66 181 MET9C 101 ILE9C 201 THR9C 369 PRO15L 17 PHE4 4 225 PHE5 5 641 ILE2 2 162 GLY12H 130 THR9C 355 PRO5 5 634 VAL15L 88 GLY	9	С	313	ALA
9C 370 PRO15L48ASP15L49ASP15L85ASN55133GLY55346ALA66147LEU9C302PRO22180ASN338ILE66181MET9C101ILE9C369PRO15L17PHE44225PHE55641ILE22162GLY12H130THR9C355PRO55634VAL15L88GLY	9	С	362	GLU
15L48ASP 15 L49ASP 15 L85ASN 5 5 133GLY 5 5 346ALA 6 6 147LEU 9 C302PRO 2 2 180ASN 3 3 8 ILE 6 6 181MET 9 C101ILE 9 C201THR 9 C369PRO 15 L17PHE 4 4 225PHE 5 5 641 ILE 2 2 162 GLY 12 H130THR 9 C 355 PRO 5 5 634 VAL 15 L88GLY	9	С	370	PRO
15L 49 ASP 15 L 85 ASN 5 5 133 GLY 5 5 346 ALA 6 6 147 LEU 9 C 302 PRO 2 2 180 ASN 3 3 8 ILE 6 6 181 MET 9 C 101 ILE 9 C 201 THR 9 C 369 PRO 15 L 17 PHE 4 4 225 PHE 5 5 641 ILE 2 2 162 GLY 12 H 130 THR 9 C 355 PRO 5 5 634 VAL 15 L 88 GLY	15	L	48	ASP
15L 85 ASN 5 5 133 GLY 5 5 346 ALA 6 6 147 LEU 9 C 302 PRO 2 2 180 ASN 3 3 8 ILE 6 6 181 MET 9 C 101 ILE 9 C 201 THR 9 C 201 THR 9 C 369 PRO 15 L 17 PHE 4 4 225 PHE 5 5 641 ILE 2 2 162 GLY 12 H 130 THR 9 C 355 PRO 5 5 634 VAL 15 L 88 GLY	15	L	49	ASP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	L	85	ASN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	5	133	GLY
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	5	346	ALA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	6	147	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	С	302	PRO
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2	180	ASN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	3	8	ILE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	6	181	MET
9 C 201 THR 9 C 369 PRO 15 L 17 PHE 4 4 225 PHE 5 5 641 ILE 2 2 162 GLY 12 H 130 THR 9 C 234 GLY 9 C 355 PRO 5 5 634 VAL 15 L 88 GLY	9	С	101	ILE
9 C 369 PRO 15 L 17 PHE 4 4 225 PHE 5 5 641 ILE 2 2 162 GLY 12 H 130 THR 9 C 234 GLY 9 C 355 PRO 5 5 634 VAL 15 L 88 GLY	9	С	201	THR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	С	369	PRO
4 4 225 PHE 5 5 641 ILE 2 2 162 GLY 12 H 130 THR 9 C 234 GLY 9 C 355 PRO 5 5 634 VAL 15 L 88 GLY	15	L	17	PHE
5 5 641 ILE 2 2 162 GLY 12 H 130 THR 9 C 234 GLY 9 C 355 PRO 5 5 634 VAL 15 L 88 GLY	4	4	225	PHE
2 2 162 GLY 12 H 130 THR 9 C 234 GLY 9 C 355 PRO 5 5 634 VAL 15 L 88 GLY	5	5	641	ILE
12 H 130 THR 9 C 234 GLY 9 C 355 PRO 5 5 634 VAL 15 L 88 GLY	2	2	162	GLY
9 C 234 GLY 9 C 355 PRO 5 5 634 VAL 15 L 88 GLY	12	Н	130	THR
9 C 355 PRO 5 5 634 VAL 15 L 88 GLY	9	С	234	GLY
5 5 634 VAL 15 L 88 GLY	9	С	355	PRO
15 L 88 GLY	5	5	634	VAL
	15	L	88	GLY

Continued from previous page...

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	1	175/186~(94%)	129 (74%)	46 (26%)	0 4
2	2	291/291~(100%)	220~(76%)	71 (24%)	0 4
3	3	60/60~(100%)	42 (70%)	18 (30%)	0 2
4	4	215/215~(100%)	163~(76%)	52 (24%)	0 4
5	5	301/305~(99%)	225~(75%)	76 (25%)	0 4
6	6	110/167~(66%)	73~(66%)	37 (34%)	0 1
7	А	39/40~(98%)	36~(92%)	3~(8%)	13 45
8	В	53/56~(95%)	50 (94%)	3~(6%)	20 55
9	\mathbf{C}	238/371~(64%)	203~(85%)	35~(15%)	3 20
11	G	55/55~(100%)	53~(96%)	2 (4%)	35 67
12	Η	19/19~(100%)	18 (95%)	1 (5%)	22 58
13	Ι	55/55~(100%)	44 (80%)	11 (20%)	1 8
14	Κ	91/157~(58%)	74 (81%)	17 (19%)	1 10
15	L	69/77~(90%)	46 (67%)	23 (33%)	0 2
All	All	1771/2054 (86%)	1376 (78%)	395 (22%)	1 6

All (395) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	1	3	ILE
1	1	11	PHE
1	1	14	CYS
1	1	22	LEU
1	1	33	MET
1	1	35	ARG
1	1	42	VAL
1	1	53	ASP
1	1	137	ILE
1	1	142	GLN
1	1	144	ILE

Mol	Chain	Res	Type
1	1	147	GLU
1	1	150	LEU
1	1	151	THR
1	1	152	SER
1	1	155	ILE
1	1	156	ILE
1	1	157	ILE
1	1	162	SER
1	1	164	LEU
1	1	165	ASN
1	1	193	SER
1	1	196	GLU
1	1	197	THR
1	1	199	ARG
1	1	204	LEU
1	1	206	GLU
1	1	208	GLU
1	1	211	LEU
1	1	215	TYR
1	1	217	THR
1	1	229	LEU
1	1	241	PHE
1	1	247	LEU
1	1	276	LEU
1	1	277	ILE
1	1	278	ASN
1	1	279	SER
1	1	284	ILE
1	1	289	LEU
1	1	291	PHE
1	1	295	TRP
1	1	312	CYS
1	1	319	LEU
1	1	321	PHE
1	1	323	ILE
2	2	1	MET
2	2	2	LEU
2	2	3	ILE
2	2	7	ILE
2	2	8	SER
2	2	16	SER
2	2	17	LYS
		1	

Mol	Chain	Res	Type
2	2	18	LEU
2	2	25	ILE
2	2	45	LEU
2	2	48	ASN
2	2	49	ASN
2	2	58	LEU
2	2	67	TYR
2	2	68	ILE
2	2	80	SER
2	2	125	THR
2	2	132	LEU
2	2	138	TYR
2	2	141	THR
2	2	143	ILE
2	2	145	ASN
2	2	156	LEU
2	2	171	SER
2	2	172	ILE
2	2	173	ASN
2	2	174	THR
2	2	178	VAL
2	2	187	LEU
2	2	188	ASP
2	2	196	ASP
2	2	197	LEU
2	2	204	LEU
2	2	212	ILE
2	2	219	LYS
2	2	224	ILE
2	2	232	ILE
2	2	233	THR
2	2	239	ILE
2	2	241	LYS
2	2	242	ILE
2	2	250	LEU
2	2	261	SER
2	2	267	THR
2	2	269	LEU
2	2	276	LEU
2	2	277	LEU
2	2	278	GLN
2	2	280	LYS
	1		

Mol	Chain	Res	Type
2	2	282	LYS
2	2	283	ARG
2	2	288	SER
2	2	298	LEU
2	2	300	LEU
2	2	304	ASN
2	2	307	PHE
2	2	310	LEU
2	2	311	TYR
2	2	314	THR
2	2	319	SER
2	2	321	LEU
2	2	328	ILE
2	2	362	LEU
2	2	363	SER
2	2	367	VAL
2	2	370	SER
2	2	371	PHE
2	2	377	LEU
2	2	378	LEU
2	2	412	TYR
2	2	413	TYR
3	3	2	ASN
3	3	5	ILE
3	3	6	ILE
3	3	7	PHE
3	3	57	ILE
3	3	58	LEU
3	3	68	LEU
3	3	73	LEU
3	3	74	LEU
3	3	77	VAL
3	3	78	MET
3	3	81	TYR
3	3	83	VAL
3	3	85	ASN
3	3	88	PHE
3	3	90	ILE
3	3	98	LEU
3	3	102	PHE
4	4	136	SER
4	4	139	ILE

Mol	Chain	Res	Type
4	4	144	THR
4	4	150	ILE
4	4	166	TYR
4	4	169	MET
4	4	172	LEU
4	4	180	LEU
4	4	182	ILE
4	4	185	ILE
4	4	201	VAL
4	4	203	SER
4	4	205	ASP
4	4	206	LEU
4	4	216	ILE
4	4	227	ILE
4	4	231	LEU
4	4	233	VAL
4	4	237	GLU
4	4	259	LEU
4	4	260	ARG
4	4	263	LEU
4	4	265	LEU
4	4	267	CYS
4	4	276	MET
4	4	280	ILE
4	4	281	SER
4	4	282	LEU
4	4	286	ILE
4	4	287	LEU
4	4	296	ILE
4	4	298	LEU
4	4	299	LYS
4	4	301	ILE
4	4	302	ILE
4	4	306	SER
4	4	307	ILE
4	4	320	ASN
4	4	323	LEU
4	4	325	ILE
4	4	372	LEU
4	4	397	LEU
4	4	404	ILE
4	4	405	ARG

Mol	Chain	Res	Type
4	4	454	MET
4	4	455	ASN
4	4	457	LEU
4	4	458	ILE
4	4	461	THR
4	4	464	ILE
4	4	466	ILE
4	4	467	CYS
5	5	82	ASP
5	5	84	LEU
5	5	86	ILE
5	5	88	MET
5	5	89	LEU
5	5	103	SER
5	5	104	ILE
5	5	108	GLU
5	5	112	HIS
5	5	116	PHE
5	5	120	LEU
5	5	124	THR
5	5	136	TYR
5	5	137	PHE
5	5	138	VAL
5	5	139	LEU
5	5	143	TRP
5	5	145	PHE
5	5	160	ARG
5	5	161	LEU
5	5	162	GLN
5	5	176	PHE
5	5	181	PHE
5	5	185	LEU
5	5	188	ILE
5	5	191	VAL
5	5	209	THR
5	5	210	ASP
5	5	212	LEU
5	5	215	ILE
5	5	216	MEΓ
5	5	217	LEU
5	5	230	PHE
5	5	233	HIS

Mol	Chain	Res	
5	5	234	ASN
5	5	236	LEU
5	5	313	LEU
5	5	318	ILE
5	5	320	ILE
5	5	320	IEE
5	5	322	
5 5	5	321	LEU
	0 5	329	
<u> </u>	0 5	000 001	
0 F		331	
5	5 F	332	LEU
5	5	342	
5	5 -	372	TYR
5	5	383	SER
5	5	390	LEU
5	5	394	TYR
5	5	399	ILE
5	5	418	TYR
5	5	432	LEU
5	5	434	LEU
5	5	460	LEU
5	5	462	MET
5	5	471	PHE
5	5	474	TRP
5	5	578	HIS
5	5	580	ASP
5	5	584	LEU
5	5	587	LEU
5	5	589	PRO
5	5	616	MET
5	5	619	MET
5	5	621	ILE
5	5	622	LEU
5	5	628	LEU
5	5	629	LEU
5	5	630	LEU
5	5	636	ASN
5	5	637	VAL
5	5	640	ILE
5	5	643	ILE
5	5	645	VAL
5	5	653	LEU
5	0	000	

Mol	Chain	Res	Type
6	6	11	ILE
6	6	13	ILE
6	6	15	LEU
6	6	23	ILE
6	6	28	ASN
6	6	41	VAL
6	6	42	ILE
6	6	58	LEU
6	6	59	TYR
6	6	70	LEU
6	6	72	LEU
6	6	74	ILE
6	6	77	LEU
6	6	80	ILE
6	6	83	THR
6	6	98	LEU
6	6	100	SER
6	6	102	ILE
6	6	104	LEU
6	6	109	LEU
6	6	110	MET
6	6	112	TYR
6	6	149	THR
6	6	150	ILE
6	6	154	LEU
6	6	155	LEU
6	6	156	THR
6	6	160	PHE
6	6	161	ILE
6	6	167	ILE
6	6	168	VAL
6	6	169	LEU
6	6	170	LEU
6	6	171	LEU
6	6	173	ILE
6	6	174	ILE
6	6	180	THR
7	А	124	MET
7	А	142	CYS
7	А	186	CYS
8	В	388	ARG
8	В	427	CYS

Mol	Chain	Res	Type
8	В	429	LEU
9	С	102	LEU
9	С	139	PHE
9	С	144	TYR
9	С	145	VAL
9	С	147	MET
9	С	162	LEU
9	С	176	MET
9	С	180	ILE
9	С	186	HIS
9	С	189	SER
9	С	200	LEU
9	С	201	THR
9	С	204	LEU
9	С	207	PHE
9	С	208	GLU
9	С	214	MET
9	С	216	PHE
9	С	217	TYR
9	С	247	ILE
9	С	248	TYR
9	С	257	ARG
9	С	266	THR
9	С	278	ILE
9	С	284	GLN
9	С	285	ASP
9	С	291	LEU
9	С	297	ARG
9	С	308	ASN
9	С	311	TYR
9	С	344	LEU
9	С	351	CYS
9	С	359	VAL
9	C	377	ASP
9	С	387	LEU
9	C	425	CYS
11	G	84	LYS
11	G	177	TRP
12	Н	130	THR
13	Ι	78	PHE
13	Ι	82	GLU
13	Ι	83	MET

Mol	Chain	Res	Type
13	Ι	84	PHE
13	Ι	130	CYS
13	Ι	137	GLU
13	Ι	139	ILE
13	Ι	143	LEU
13	Ι	172	CYS
13	Ι	190	VAL
13	Ι	192	TYR
14	K	73	GLN
14	K	79	VAL
14	K	81	PHE
14	K	85	CYS
14	K	112	ARG
14	K	123	LEU
14	K	124	THR
14	K	125	ASN
14	K	131	LEU
14	K	132	ARG
14	K	140	GLU
14	K	168	ASP
14	K	177	VAL
14	K	180	CYS
14	K	193	GLN
14	K	194	LEU
14	K	196	ARG
15	L	2	PHE
15	L	3	ILE
15	L	12	PHE
15	L	19	ARG
15	L	20	ARG
15	L	24	LEU
15	L	28	CYS
15	L	29	LEU
15	L	36	ILE
15	L	39	ILE
15	L	41	LEU
15	L	42	ARG
15	L	46	LEU
15	L	48	ASP
15	L	49	ASP
15	L	51	SER
15	L	57	ILE

Continued from previous page...

Mol	Chain	Res	Type
15	L	62	LEU
15	L	71	LEU
15	L	74	LEU
15	L	78	TYR
15	L	79	ARG
15	L	84	ILE

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (17) such side chains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	1	165	ASN
2	2	62	ASN
2	2	173	ASN
4	4	400	GLN
4	4	455	ASN
4	4	469	GLN
5	5	113	GLN
5	5	162	GLN
7	А	185	HIS
9	С	185	ASN
9	С	445	HIS
11	G	193	HIS
13	Ι	189	ASN
14	Κ	113	GLN
14	Κ	133	GLN
14	Κ	152	ASN
15	L	37	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

8 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Type Chain Bes Link		Tink	B	ond leng	gths	Bond angles	
IVIOI	туре	Unain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ # Z > 2
49	FES	Н	300	12	0,4,4	-	-	-	
50	SF4	В	500	8	0,12,12	-	-	-	
50	SF4	K	500	14	0,12,12	-	-	-	
49	FES	А	900	7	0,4,4	-	-	-	
50	SF4	Ι	500	13	0,12,12	-	-	-	
50	SF4	А	902	7	0,12,12	-	-	-	
50	SF4	A	901	7	0,12,12	-	-	-	
50	SF4	Ι	501	13	0,12,12	-	-	-	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
49	FES	Н	300	12	-	-	0/1/1/1
50	SF4	В	500	8	-	-	0/6/5/5
50	SF4	Κ	500	14	-	-	0/6/5/5
49	FES	А	900	7	-	-	0/1/1/1
50	SF4	Ι	500	13	-	-	0/6/5/5
50	SF4	А	902	7	-	-	0/6/5/5
50	SF4	А	901	7	-	-	0/6/5/5
50	SF4	Ι	501	13	-	-	0/6/5/5

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

Mol	Chain	Res	Type	Clashes	Symm-Clashes
49	Н	300	FES	1	0
50	K	500	SF4	2	0
50	Ι	500	SF4	1	0
50	А	902	SF4	1	0
50	Ι	501	SF4	1	0

5 monomers are involved in 6 short contacts:

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
7	А	30
8	В	11
10	Е	10
5	5	8
13	Ι	5
12	Н	5
2	2	4
4	4	4
1	1	3
3	3	2
11	G	2
22	Р	1
16	Ζ	1
37	AL	1
21	0	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	E	422:UNK	С	499:UNK	N	48.62
1	В	270:UNK	С	279:UNK	N	26.71
1	Е	513:UNK	С	604:UNK	N	26.57
1	А	148:UNK	С	152:UNK	N	24.97
1	Ι	92:UNK	С	103:UNK	N	24.67
1	3	21:UNK	С	38:UNK	N	22.87

4WZ7	
------	--

Continued from previous page										
Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (A)				
1	E	325:UNK	С	404:UNK	N	22.86				
1	2	422:UNK	С	446:UNK	N	21.69				
1	A	358:UNK	С	360:UNK	N	17.83				
1	E	637:UNK	С	785:UNK	N	17.21				
1	Н	121:UNK	С	127:CYS	N	16.50				
1	E	65:UNK	С	83:UNK	N	16.40				
1	E	109:UNK	С	161:UNK	Ν	16.24				
1	В	109:UNK	С	115:UNK	N	16.14				
1	A	560:UNK	С	565:UNK	N	16.08				
1	Е	180:UNK	С	235:UNK	N	15.93				
1	Ι	212:UNK	С	233:UNK	N	15.00				
1	В	195:UNK	С	201:UNK	N	14.93				
1	Е	795:UNK	С	887:UNK	N	14.77				
1	Н	174:UNK	С	181:UNK	N	14.49				
1	А	510:UNK	С	515:UNK	N	12.92				
1	А	81:UNK	С	84:UNK	N	12.79				
1	А	363:UNK	С	367:UNK	N	12.10				
1	3	44:UNK	С	51:UNK	N	12.08				
1	В	343:UNK	С	356:UNK	N	11.74				
1	A	642:UNK	С	647:UNK	N	11.45				
1	Н	109:UNK	С	117:UNK	N	11.18				
1	A	708:UNK	С	712:UNK	N	10.79				
1	Н	90:UNK	С	94:UNK	N	10.68				
1	4	52:UNK	С	57:UNK	N	10.67				
1	G	138:UNK	С	145:UNK	N	10.57				
1	2	84:GLY	С	97:UNK	N	10.44				
1	2	255:UNK	С	256:UNK	N	10.18				
1	G	125:UNK	С	128:UNK	N	9.87				
1	В	155:UNK	С	159:UNK	N	9.83				
1	4	67:UNK	С	76:UNK	N	9.82				
1	В	120:UNK	С	125:UNK	N	9.82				
1	A	414:UNK	C	416:UNK	N	9.79				
1	В	245:UNK	С	251:UNK	N	9.67				
1	Р	727:UNK	C	728:UNK	N	9.66				
1	I	153:UNK	C	157:UNK	N	9.61				
1	5	297:UNK	C	301:UNK	N	9.57				
1	H	162:UNK	C	165:UNK	N	9.53				
1	A	530:UNK	C	534:UNK	N	9.36				
1	A	427:UNK	C	432:UNK	N	9.27				
1	A	541:UNK	Č	543:UNK	N	9.20				
1	I	120:UNK	Č	128:UNK	N	9.06				
1	A	127:ALA	C	131:ALA	N	8.89				
1	А	127:ALA	С	131:ALA	N	8.89				

Continue d fr . .

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	А	457:UNK	С	464:UNK	Ν	8.88
1	А	435:UNK	С	438:UNK	N	8.86
1	В	87:UNK	С	92:UNK	N	8.74
1	4	18:UNK	С	22:UNK	Ν	8.73
1	Е	242:UNK	С	316:UNK	Ν	8.00
1	1	120:UNK	С	129:UNK	Ν	7.81
1	А	704:UNK	С	707:UNK	Ν	7.59
1	1	62:UNK	С	66:UNK	Ν	7.54
1	А	87:UNK	С	89:UNK	Ν	7.53
1	5	24:UNK	С	27:UNK	Ν	7.47
1	Z	17:UNK	С	18:UNK	Ν	7.27
1	А	492:UNK	С	496:UNK	Ν	7.13
1	Ι	235:UNK	С	238:UNK	Ν	7.03
1	А	273:UNK	С	276:UNK	Ν	6.99
1	4	435:UNK	С	437:UNK	Ν	6.95
1	А	293:UNK	С	297:UNK	Ν	6.62
1	А	257:UNK	С	260:UNK	Ν	6.51
1	А	246:UNK	С	248:UNK	Ν	6.34
1	А	408:UNK	С	409:UNK	Ν	6.33
1	А	580:UNK	С	586:UNK	Ν	6.31
1	5	604:UNK	С	613:UNK	Ν	6.10
1	В	303:UNK	С	306:UNK	Ν	5.89
1	А	236:GLY	С	240:UNK	Ν	5.83
1	5	447:UNK	С	455:UNK	Ν	5.76
1	А	181:UNK	С	183:CYS	Ν	5.74
1	А	309:UNK	С	313:UNK	Ν	5.28
1	Е	57:UNK	С	59:UNK	Ν	5.13
1	5	437:UNK	С	439:UNK	Ν	5.04
1	В	406:UNK	С	407:UNK	Ν	4.53
1	В	238:UNK	С	240:UNK	Ν	4.43
1	AL	2916:UNK	С	2917:UNK	Ν	4.25
1	2	332:UNK	С	339:UNK	Ν	4.23
1	5	412:UNK	С	416:UNK	Ν	4.21
1	1	173:UNK	C	177:UNK	N	4.18
1	A	443:UNK	С	445:UNK	N	3.87
1	5	205:UNK	C	208:UNK	N	3.82
1	5	550:UNK	С	560:UNK	Ν	3.79
1	0	639:UNK	С	640:UNK	N	3.76
1	A	397:UNK	С	400:UNK	Ν	3.56
1	A	334:UNK	C	336:UNK	Ν	3.40

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.3 Carbohydrates (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

