

Full wwPDB X-ray Structure Validation Report (i)

Jun 13, 2024 – 01:46 AM EDT

PDB ID	:	3KIP
Title	:	Crystal structure of type-II 3-dehydroquinase from C. albicans
Authors	:	Trapani, S.; Schoehn, G.; Navaza, J.; Abergel, C.
Deposited on	:	2009-11-02
Resolution	:	2.95 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	2022.3.0, CSD as543be (2022)
Xtriage (Phenix)	:	1.20.1
EDS	:	2.36.2
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 2.95 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$		
R _{free}	130704	3104 (3.00-2.92)		
Clashscore	141614	3462 (3.00-2.92)		
Ramachandran outliers	138981	3340 (3.00-2.92)		
Sidechain outliers	138945	3343 (3.00-2.92)		
RSRZ outliers	127900	2986 (3.00-2.92)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain						
1	А	167	59%	22% • • 14%					
1	В	167	55%	23% 6% • 14%					
1	С	167	% • 57%	25% • • 14%					
1	D	167	2% 62%	19% • 14%					
1	Е	167	63%	19% • • 13%					

Mol	Chain	Length	Quality of cha	in		
1	F	167	61%	23%	••	13%
1	G	167	2% 59%	24%	••	14%
1	Н	167	% 64%	20%	••	14%
1	Ι	167	62%	23%	• •	12%
1	J	167	62%	19%		14%
1	Κ	167	<u>6%</u> 59%	24%	••	14%
1	L	167	63%	19%	••	14%
1	М	167	63%	16%	5% •	14%
1	Ν	167	% 62%	20%	••	14%
1	0	167	63%	19%	•••	14%
1	Р	167	% 65%	17%		14%
1	Q	167	% 65%	15%	7%	14%
1	R	167	% 66%	18%		14%
1	S	167	5%	25%	6% •	14%
1	Т	167	8%	28%	5% •	14%
1	U	167	% 56%	24%	5% •	14%
1	V	167	2% 62%	20%		14%
1	W	167	5%	23%	5% •	13%
1	X	167	4%	25%	6% •	13%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	TRS	D	156	-	Х	-	-
3	TRS	Р	156	-	Х	-	-

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 27144 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace	
1	Δ	149	Total	С	Ν	0	S	0	0	0	
	A	140	1108	706	193	208	1	0	0	0	
1	D	1 / 9	Total	С	Ν	0	S	0	0	0	
	D	140	1108	706	193	208	1	0	0	0	
1	С	1/13	Total	С	Ν	0	S	0	0	0	
1	U	140	1108	706	193	208	1	0	0	0	
1	П	144	Total	С	Ν	Ο	\mathbf{S}	0	0	Ο	
1	D	144	1117	711	195	210	1	0	0	0	
1	E	145	Total	С	Ν	Ο	\mathbf{S}	0	0	0	
		110	1125	717	196	211	1	0	0	0	
1	F	145	Total	С	Ν	Ο	\mathbf{S}	0	0	0	
	1	140	1125	717	196	211	1	0	0	0	
1	G	143	Total	С	Ν	Ο	\mathbf{S}	0	0	0	
	<u> </u>	110	1108	706	193	208	1	0	0	0	
1	Н	144	Total	С	Ν	Ο	\mathbf{S}	0	0	0	
			1116	712	194	209	1		-		
1	T	147	Total	С	Ν	Ο	S	0	0	0	
	-		1142	727	198	216	1	Ŭ	<u> </u>		
1	J	143	Total	С	Ν	Ο	S	0	0	0	
	, in the second		1108	706	193	208	1				<u> </u>
1	K	144	Total	С	Ν	Ο	\mathbf{S}	0	0	0	
			1116	712	194	209	1	Ŭ			
1	L	144	Total	С	Ν	0	S	0	0	0	
			1116	712	194	209	1				
1	М	144	Total	С	Ν	0	S	0	0	0	
			1116	712	194	209	1				
1	Ν	144	Total	С	N	0	S	0	0	0	
			1116	712	194	209	1		-		
1	0	144	Total	С	N	0	S	0	0	0	
	~		1116	712	194	209	1				
1	Р	144	Total	С	Ν	Ο	\mathbf{S}	0	0	0	
	-	***	1116	712	194	209	1			Ŭ	

• Molecule 1 is a protein called 3-dehydroquinase, type II.

 \mathbf{S}

Т

U

V

W

Х

ZeroOcc	AltConf	Trace
0	0	0

ed from previous page									
Chain	Residues		At	ZeroOcc	Al				
0	144	Total	С	Ν	0	S	0		
Q	144	1116	712	194	209	1	0		
R	144	Total	С	Ν	0	S	0		
	144	1116	712	194	209	1	0		
C	144	Total	С	Ν	Ο	S	0		

С

С

С

С

С

Total

Total

Total

Total

Total

Ν

Ν

Ν

Ν

Ν

Ο

Ο

Ο

Ο

S

 \mathbf{S}

S

 \mathbf{S}

 \mathbf{S}

Continue Mol C

There are 528 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	-12	ALA	-	expression tag	UNP Q59Z17
А	-11	HIS	-	expression tag	UNP Q59Z17
А	-10	HIS	-	expression tag	UNP Q59Z17
А	-9	HIS	-	expression tag	UNP Q59Z17
A	-8	HIS	-	expression tag	UNP Q59Z17
А	-7	HIS	-	expression tag	UNP Q59Z17
А	-6	HIS	-	expression tag	UNP Q59Z17
А	-5	GLY	-	expression tag	UNP Q59Z17
А	-4	HIS	-	expression tag	UNP Q59Z17
А	-3	HIS	-	expression tag	UNP Q59Z17
А	-2	HIS	-	expression tag	UNP Q59Z17
А	-1	GLN	-	expression tag	UNP Q59Z17
А	0	LEU	-	expression tag	UNP Q59Z17
А	146	GLN	-	expression tag	UNP Q59Z17
А	147	LEU	-	expression tag	UNP Q59Z17
А	148	ASP	-	expression tag	UNP Q59Z17
А	149	GLY	-	expression tag	UNP Q59Z17
А	150	ASP	-	expression tag	UNP Q59Z17
А	151	LEU	-	expression tag	UNP Q59Z17
А	152	GLU	-	expression tag	UNP Q59Z17
А	153	ALA	-	expression tag	UNP Q59Z17
А	154	ALA	-	expression tag	UNP Q59Z17
В	-12	ALA	-	expression tag	UNP Q59Z17

Continued on next page...

Chain	Residue	Modelled	Actual	Comment	Reference
В	-11	HIS	-	expression tag	UNP Q59Z17
В	-10	HIS	-	expression tag	UNP Q59Z17
В	-9	HIS	-	expression tag	UNP Q59Z17
В	-8	HIS	-	expression tag	UNP Q59Z17
В	-7	HIS	-	expression tag	UNP Q59Z17
В	-6	HIS	-	expression tag	UNP Q59Z17
В	-5	GLY	_	expression tag	UNP Q59Z17
В	-4	HIS	-	expression tag	UNP Q59Z17
В	-3	HIS	-	expression tag	UNP Q59Z17
В	-2	HIS	-	expression tag	UNP Q59Z17
В	-1	GLN	-	expression tag	UNP Q59Z17
В	0	LEU	-	expression tag	UNP Q59Z17
В	146	GLN	-	expression tag	UNP Q59Z17
В	147	LEU	-	expression tag	UNP Q59Z17
В	148	ASP	-	expression tag	UNP Q59Z17
В	149	GLY	-	expression tag	UNP Q59Z17
В	150	ASP	-	expression tag	UNP Q59Z17
В	151	LEU	-	expression tag	UNP Q59Z17
В	152	GLU	-	expression tag	UNP Q59Z17
В	153	ALA	-	expression tag	UNP Q59Z17
В	154	ALA	-	expression tag	UNP Q59Z17
С	-12	ALA	-	expression tag	UNP Q59Z17
С	-11	HIS	-	expression tag	UNP Q59Z17
С	-10	HIS	-	expression tag	UNP Q59Z17
С	-9	HIS	-	expression tag	UNP Q59Z17
С	-8	HIS	-	expression tag	UNP Q59Z17
С	-7	HIS	-	expression tag	UNP Q59Z17
С	-6	HIS	-	expression tag	UNP Q59Z17
С	-5	GLY	-	expression tag	UNP Q59Z17
С	-4	HIS	-	expression tag	UNP Q59Z17
С	-3	HIS	-	expression tag	UNP $Q59Z17$
С	-2	HIS	-	expression tag	UNP Q59Z17
С	-1	GLN	-	expression tag	UNP $Q59Z17$
С	0	LEU	-	expression tag	UNP Q59Z17
С	146	GLN	-	expression tag	UNP Q59Z17
С	147	LEU	-	expression tag	UNP Q59Z17
С	148	ASP	-	expression tag	UNP $Q59Z17$
C	149	GLY	-	expression tag	UNP $\overline{\text{Q59Z17}}$
C	150	ASP	-	expression tag	UNP $Q59Z17$
C	151	LEU	-	expression tag	UNP $\overline{\text{Q59Z17}}$
C	152	GLU	-	expression tag	UNP $\overline{\text{Q59Z17}}$
С	153	ALA	-	expression tag	UNP $Q59Z17$

Chain	Residue	Modelled	Actual	Comment	Reference
С	154	ALA	-	expression tag	UNP Q59Z17
D	-12	ALA	_	expression tag	UNP Q59Z17
D	-11	HIS	-	expression tag	UNP Q59Z17
D	-10	HIS	-	expression tag	UNP Q59Z17
D	-9	HIS	-	expression tag	UNP Q59Z17
D	-8	HIS	-	expression tag	UNP Q59Z17
D	-7	HIS	_	expression tag	UNP Q59Z17
D	-6	HIS	-	expression tag	UNP Q59Z17
D	-5	GLY	-	expression tag	UNP Q59Z17
D	-4	HIS	-	expression tag	UNP Q59Z17
D	-3	HIS	-	expression tag	UNP Q59Z17
D	-2	HIS	-	expression tag	UNP Q59Z17
D	-1	GLN	-	expression tag	UNP Q59Z17
D	0	LEU	-	expression tag	UNP Q59Z17
D	146	GLN	-	expression tag	UNP Q59Z17
D	147	LEU	-	expression tag	UNP Q59Z17
D	148	ASP	-	expression tag	UNP Q59Z17
D	149	GLY	-	expression tag	UNP Q59Z17
D	150	ASP	-	expression tag	UNP Q59Z17
D	151	LEU	-	expression tag	UNP Q59Z17
D	152	GLU	-	expression tag	UNP Q59Z17
D	153	ALA	-	expression tag	UNP Q59Z17
D	154	ALA	-	expression tag	UNP Q59Z17
Е	-12	ALA	-	expression tag	UNP Q59Z17
Е	-11	HIS	-	expression tag	UNP Q59Z17
Е	-10	HIS	-	expression tag	UNP Q59Z17
Е	-9	HIS	-	expression tag	UNP Q59Z17
Е	-8	HIS	-	expression tag	UNP Q59Z17
Е	-7	HIS	-	expression tag	UNP Q59Z17
Е	-6	HIS	-	expression tag	UNP Q59Z17
Е	-5	GLY	-	expression tag	UNP Q59Z17
Е	-4	HIS	-	expression tag	UNP Q59Z17
Е	-3	HIS	-	expression tag	UNP Q59Z17
Е	-2	HIS	-	expression tag	UNP Q59Z17
Е	-1	GLN	-	expression tag	UNP Q59Z17
Е	0	LEU	-	expression tag	UNP Q59Z17
Е	146	GLN	-	expression tag	UNP Q59Z17
Е	147	LEU	-	expression tag	UNP Q59Z17
Е	148	ASP	-	expression tag	UNP Q59Z17
Е	149	GLY	-	expression tag	UNP Q59Z17
Е	150	ASP	-	expression tag	UNP Q59Z17
Е	151	LEU	-	expression tag	UNP Q59Z17

1	Chain	Residue	Modelled	Actual	Comment	Reference
	E	152	GLU		expression tag	UNP Q59Z17
	E	153	ALA	_	expression tag	UNP Q59Z17
	E	154	ALA	_	expression tag	UNP Q59Z17
	F	-12	ALA	_	expression tag	UNP Q59Z17
	F	-11	HIS	_	expression tag	UNP Q59Z17
	F	-10	HIS	_	expression tag	UNP Q59Z17
	F	_9	HIS	_	expression tag	UNP 059Z17
	F	-8	HIS	_	expression tag	UNP Q59Z17
	F	-7	HIS	_	expression tag	UNP Q59Z17
	F	-6	HIS	-	expression tag	UNP Q59Z17
	F	-5	GLY	_	expression tag	UNP Q59Z17
	F	-4	HIS	_	expression tag	UNP Q59Z17
	F	-3	HIS	_	expression tag	UNP 059Z17
	F	_2	HIS		expression tag	UNP 059Z17
	F		GLN	_	expression tag	UNP 059Z17
	г F	0	LEU	_	expression tag	UNP 050Z17
	F	146	GLN	_	expression tag	$\frac{000}{1000} \frac{000}{000} \frac{000}{000} \frac{000}{000}$
	г F	140	LEU	_	expression tag	UNP 050Z17
	F	147		_	expression tag	$\frac{000}{1000} \frac{000}{000} \frac{000}{000} \frac{000}{000}$
	F	140	GLV	_	expression tag	$\frac{000}{100} \frac{000}{000} \frac{000}{000} \frac{000}{000} \frac{000}{000}$
	F	149		_	expression tag	$\frac{000}{1000} \frac{000}{000} \frac{000}{000} \frac{000}{000}$
	F	150	LEU	_	expression tag	$\frac{000}{100} \frac{000}{000} \frac{000}{000} \frac{000}{000} \frac{000}{000}$
	F F	151	GLU	-	expression tag	$\frac{0001}{00000000000000000000000000000000$
	г F	152		-	expression tag	$\frac{001}{1000} \frac{0000}{000} 0$
	г F	153		-	expression tag	$\frac{001}{1000} \frac{0000}{0000} \frac$
	r C	194		-	expression tag	$\frac{001}{0000} \frac{0000}{0000} \frac$
	G	-12		-	expression tag	$\frac{\text{UNI} \text{ Q39217}}{\text{UNP} 050717}$
	G	-11		-	expression tag	$\frac{\text{UNI} \text{ Q39217}}{\text{UNP} \text{ O50717}}$
	G	-10		-	expression tag	$\frac{\text{UNI} \text{ Q39217}}{\text{UNP} 050717}$
	G	-9		-	expression tag	$\frac{001}{000000000000000000000000000000000$
	G	-8		-	expression tag	$\frac{001}{000000000000000000000000000000000$
	G	-1		-	expression tag	$\frac{\text{UNF Q39217}}{\text{UND O50717}}$
	G	-0		-	expression tag	$\frac{\text{UNF Q39217}}{\text{UND Q50717}}$
	G	-5		-	expression tag	$\frac{\text{UNF Q39217}}{\text{UND O50717}}$
	G	-4		-	expression tag	$\frac{\text{UNF Q39217}}{\text{UND Q50717}}$
	G	-0 0		-	expression tag	$\frac{\text{UNP Q59Z17}}{\text{UND O50Z17}}$
	G	-2		-	expression tag	$\frac{\text{UNF Q39217}}{\text{UND Q50717}}$
	G	-1	GLN	-	expression tag	UNP Q59217
	G			-	expression tag	UNP Q59217
	G	140		-	expression tag	UNE Q09217
	G	14/		-	expression tag	UNP Q59Z17
	G	148	ASP	-	expression tag	UNP Q59Z17
	G	149	GLY	-	expression tag	UNP Q59ZI7

Contentia	ca from pre	vious page			
Chain	Residue	Modelled	Actual	Comment	Reference
G	150	ASP	-	expression tag	UNP Q59Z17
G	151	LEU	_	expression tag	UNP Q59Z17
G	152	GLU	-	expression tag	UNP Q59Z17
G	153	ALA	-	expression tag	UNP Q59Z17
G	154	ALA	-	expression tag	UNP Q59Z17
Н	-12	ALA	-	expression tag	UNP Q59Z17
Н	-11	HIS	_	expression tag	UNP Q59Z17
Н	-10	HIS	-	expression tag	UNP Q59Z17
Н	-9	HIS	-	expression tag	UNP Q59Z17
Н	-8	HIS	-	expression tag	UNP Q59Z17
Н	-7	HIS	-	expression tag	UNP Q59Z17
Н	-6	HIS	-	expression tag	UNP Q59Z17
Н	-5	GLY	-	expression tag	UNP Q59Z17
Н	-4	HIS	-	expression tag	UNP Q59Z17
Н	-3	HIS	-	expression tag	UNP Q59Z17
Н	-2	HIS	-	expression tag	UNP Q59Z17
Н	-1	GLN	-	expression tag	UNP Q59Z17
Н	0	LEU	-	expression tag	UNP Q59Z17
Н	146	GLN	-	expression tag	UNP Q59Z17
Н	147	LEU	-	expression tag	UNP Q59Z17
Н	148	ASP	-	expression tag	UNP Q59Z17
Н	149	GLY	-	expression tag	UNP Q59Z17
Н	150	ASP	-	expression tag	UNP Q59Z17
Н	151	LEU	-	expression tag	UNP Q59Z17
Н	152	GLU	-	expression tag	UNP Q59Z17
Н	153	ALA	-	expression tag	UNP Q59Z17
Н	154	ALA	-	expression tag	UNP Q59Z17
Ι	-12	ALA	-	expression tag	UNP Q59Z17
Ι	-11	HIS	-	expression tag	UNP Q59Z17
Ι	-10	HIS	-	expression tag	UNP Q59Z17
Ι	-9	HIS	-	expression tag	UNP Q59Z17
Ι	-8	HIS	-	expression tag	UNP Q59Z17
Ι	-7	HIS	-	expression tag	UNP Q59Z17
Ι	-6	HIS	-	expression tag	UNP Q59Z17
Ι	-5	GLY	-	expression tag	UNP Q59Z17
Ι	-4	HIS	-	expression tag	UNP Q59Z17
Ι	-3	HIS	-	expression tag	UNP Q59Z17
Ι	-2	HIS	-	expression tag	UNP Q59Z17
Ι	-1	GLN	-	expression tag	UNP Q59Z17
Ι	0	LEU	-	expression tag	UNP Q59Z17
Ι	146	GLN	-	expression tag	UNP Q59Z17
Ι	147	LEU	-	expression tag	UNP Q59Z17
				· · · · · · · · · · · · · · · · · · ·	

Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference
Ι	148	ASP	_	expression tag	UNP Q59Z17
Ι	149	GLY	-	expression tag	UNP Q59Z17
Ι	150	ASP	_	expression tag	UNP Q59Z17
Ι	151	LEU	_	expression tag	UNP Q59Z17
Ι	152	GLU	-	expression tag	UNP Q59Z17
Ι	153	ALA	-	expression tag	UNP Q59Z17
Ι	154	ALA	-	expression tag	UNP Q59Z17
J	-12	ALA	-	expression tag	UNP Q59Z17
J	-11	HIS	-	expression tag	UNP Q59Z17
J	-10	HIS	-	expression tag	UNP Q59Z17
J	-9	HIS	-	expression tag	UNP Q59Z17
J	-8	HIS	-	expression tag	UNP Q59Z17
J	-7	HIS	-	expression tag	UNP Q59Z17
J	-6	HIS	-	expression tag	UNP Q59Z17
J	-5	GLY	-	expression tag	UNP Q59Z17
J	-4	HIS	-	expression tag	UNP Q59Z17
J	-3	HIS	-	expression tag	UNP Q59Z17
J	-2	HIS	-	expression tag	UNP Q59Z17
J	-1	GLN	-	expression tag	UNP Q59Z17
J	0	LEU	-	expression tag	UNP Q59Z17
J	146	GLN	-	expression tag	UNP Q59Z17
J	147	LEU	-	expression tag	UNP Q59Z17
J	148	ASP	-	expression tag	UNP Q59Z17
J	149	GLY	-	expression tag	UNP Q59Z17
J	150	ASP	-	expression tag	UNP Q59Z17
J	151	LEU	-	expression tag	UNP Q59Z17
J	152	GLU	-	expression tag	UNP Q59Z17
J	153	ALA	-	expression tag	UNP Q59Z17
J	154	ALA	-	expression tag	UNP Q59Z17
K	-12	ALA	-	expression tag	UNP Q59Z17
K	-11	HIS	-	expression tag	UNP Q59Z17
K	-10	HIS	-	expression tag	UNP Q59Z17
K	-9	HIS	-	expression tag	UNP Q59Z17
K	-8	HIS	-	expression tag	UNP Q59Z17
K	-7	HIS	-	expression tag	UNP Q59Z17
K	-6	HIS	-	expression tag	UNP Q59Z17
K	-5	GLY	-	expression tag	UNP $Q59Z17$
K	-4	HIS	-	expression tag	UNP $Q59Z17$
K	-3	HIS	-	expression tag	UNP $Q59Z17$
K	-2	HIS	-	expression tag	UNP Q59Z17
K	-1	GLN	-	expression tag	UNP $Q59Z17$
K	0	LEU	-	expression tag	UNP $Q59Z17$

Chain	Residue	Modelled	Actual	Comment	Reference
K	146	GLN	-	expression tag	UNP Q59Z17
K	147	LEU	-	expression tag	UNP Q59Z17
K	148	ASP	-	expression tag	UNP Q59Z17
K	149	GLY	-	expression tag	UNP Q59Z17
K	150	ASP	-	expression tag	UNP Q59Z17
K	151	LEU	-	expression tag	UNP Q59Z17
K	152	GLU	-	expression tag	UNP Q59Z17
K	153	ALA	-	expression tag	UNP Q59Z17
K	154	ALA	-	expression tag	UNP Q59Z17
L	-12	ALA	-	expression tag	UNP Q59Z17
L	-11	HIS	-	expression tag	UNP Q59Z17
L	-10	HIS	-	expression tag	UNP Q59Z17
L	-9	HIS	-	expression tag	UNP Q59Z17
L	-8	HIS	-	expression tag	UNP Q59Z17
L	-7	HIS	-	expression tag	UNP Q59Z17
L	-6	HIS	-	expression tag	UNP Q59Z17
L	-5	GLY	-	expression tag	UNP Q59Z17
L	-4	HIS	-	expression tag	UNP Q59Z17
L	-3	HIS	-	expression tag	UNP Q59Z17
L	-2	HIS	-	expression tag	UNP Q59Z17
L	-1	GLN	-	expression tag	UNP Q59Z17
L	0	LEU	-	expression tag	UNP Q59Z17
L	146	GLN	-	expression tag	UNP Q59Z17
L	147	LEU	-	expression tag	UNP Q59Z17
L	148	ASP	-	expression tag	UNP Q59Z17
L	149	GLY	-	expression tag	UNP Q59Z17
L	150	ASP	-	expression tag	UNP Q59Z17
L	151	LEU	-	expression tag	UNP Q59Z17
L	152	GLU	-	expression tag	UNP Q59Z17
L	153	ALA	-	expression tag	UNP Q59Z17
L	154	ALA	-	expression tag	UNP Q59Z17
М	-12	ALA	-	expression tag	UNP Q59Z17
М	-11	HIS	-	expression tag	UNP Q59Z17
М	-10	HIS	-	expression tag	UNP Q59Z17
М	-9	HIS	-	expression tag	UNP Q59Z17
М	-8	HIS	-	expression tag	UNP Q59Z17
М	-7	HIS	-	expression tag	UNP Q59Z17
M	-6	HIS	-	expression tag	UNP Q59Z17
М	-5	GLY	-	expression tag	UNP $Q59Z17$
M	-4	HIS	-	expression tag	UNP Q59Z17
М	-3	HIS	-	expression tag	UNP $Q59Z17$
М	-2	HIS	-	expression tag	UNP $Q59Z17$

Chain	Residue	Modelled	Actual	Comment	Reference
М	-1	GLN	-	expression tag	UNP Q59Z17
М	0	LEU	-	expression tag	UNP Q59Z17
М	146	GLN	_	expression tag	UNP Q59Z17
М	147	LEU	_	expression tag	UNP Q59Z17
М	148	ASP	_	expression tag	UNP Q59Z17
М	149	GLY	_	expression tag	UNP Q59Z17
М	150	ASP	_	expression tag	UNP Q59Z17
М	151	LEU	-	expression tag	UNP Q59Z17
М	152	GLU	_	expression tag	UNP Q59Z17
М	153	ALA	-	expression tag	UNP Q59Z17
М	154	ALA	-	expression tag	UNP Q59Z17
N	-12	ALA	-	expression tag	UNP Q59Z17
N	-11	HIS	-	expression tag	UNP Q59Z17
N	-10	HIS	-	expression tag	UNP Q59Z17
N	-9	HIS	-	expression tag	UNP Q59Z17
N	-8	HIS	-	expression tag	UNP Q59Z17
N	-7	HIS	-	expression tag	UNP Q59Z17
N	-6	HIS	-	expression tag	UNP Q59Z17
N	-5	GLY	-	expression tag	UNP Q59Z17
N	-4	HIS	-	expression tag	UNP Q59Z17
N	-3	HIS	-	expression tag	UNP Q59Z17
N	-2	HIS	-	expression tag	UNP Q59Z17
N	-1	GLN	-	expression tag	UNP Q59Z17
N	0	LEU	-	expression tag	UNP Q59Z17
N	146	GLN	-	expression tag	UNP Q59Z17
N	147	LEU	-	expression tag	UNP Q59Z17
N	148	ASP	-	expression tag	UNP Q59Z17
N	149	GLY	-	expression tag	UNP Q59Z17
N	150	ASP	-	expression tag	UNP Q59Z17
N	151	LEU	-	expression tag	UNP Q59Z17
N	152	GLU	-	expression tag	UNP Q59Z17
N	153	ALA	-	expression tag	UNP Q59Z17
N	154	ALA	-	expression tag	UNP Q59Z17
0	-12	ALA	-	expression tag	UNP Q59Z17
0	-11	HIS	-	expression tag	UNP Q59Z17
0	-10	HIS	-	expression tag	UNP Q59Z17
0	-9	HIS	-	expression tag	UNP $Q59Z17$
0	-8	HIS	-	expression tag	UNP $Q59Z17$
0	-7	HIS	-	expression tag	UNP $Q59Z17$
0	-6	HIS	-	expression tag	UNP $\overline{\text{Q59Z17}}$
0	-5	GLY	-	expression tag	UNP $Q59Z17$
0	-4	HIS	-	expression tag	UNP $Q59Z17$

Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference
0	-3	HIS	-	expression tag	UNP Q59Z17
0	-2	HIS	-	expression tag	UNP Q59Z17
0	-1	GLN	-	expression tag	UNP Q59Z17
0	0	LEU	-	expression tag	UNP Q59Z17
0	146	GLN	-	expression tag	UNP Q59Z17
0	147	LEU	-	expression tag	UNP Q59Z17
0	148	ASP	-	expression tag	UNP Q59Z17
0	149	GLY	-	expression tag	UNP Q59Z17
0	150	ASP	-	expression tag	UNP Q59Z17
0	151	LEU	_	expression tag	UNP Q59Z17
0	152	GLU	-	expression tag	UNP Q59Z17
0	153	ALA	_	expression tag	UNP Q59Z17
0	154	ALA	-	expression tag	UNP Q59Z17
P	-12	ALA	-	expression tag	UNP Q59Z17
Р	-11	HIS	_	expression tag	UNP Q59Z17
P	-10	HIS	-	expression tag	UNP Q59Z17
P	-9	HIS	_	expression tag	UNP Q59Z17
Р	-8	HIS	-	expression tag	UNP Q59Z17
P	-7	HIS	-	expression tag	UNP Q59Z17
Р	-6	HIS	_	expression tag	UNP Q59Z17
P	-5	GLY	_	expression tag	UNP Q59Z17
Р	-4	HIS	_	expression tag	UNP Q59Z17
P	-3	HIS	_	expression tag	UNP Q59Z17
Р	-2	HIS	-	expression tag	UNP Q59Z17
Р	-1	GLN	_	expression tag	UNP Q59Z17
P	0	LEU	-	expression tag	UNP Q59Z17
Р	146	GLN	-	expression tag	UNP Q59Z17
Р	147	LEU	-	expression tag	UNP Q59Z17
Р	148	ASP	-	expression tag	UNP Q59Z17
Р	149	GLY	-	expression tag	UNP Q59Z17
Р	150	ASP	_	expression tag	UNP Q59Z17
Р	151	LEU	-	expression tag	UNP Q59Z17
Р	152	GLU	-	expression tag	UNP Q59Z17
Р	153	ALA	-	expression tag	UNP Q59Z17
Р	154	ALA	-	expression tag	UNP Q59Z17
Q	-12	ALA	-	expression tag	UNP Q59Z17
Q	-11	HIS	-	expression tag	UNP Q59Z17
Q	-10	HIS	-	expression tag	UNP Q59Z17
Q	-9	HIS	-	expression tag	UNP $Q59Z17$
Q	-8	HIS	-	expression tag	UNP Q59Z17
Q	-7	HIS	-	expression tag	UNP Q59Z17
Q	-6	HIS	-	expression tag	UNP $Q59Z17$

Chain	Residue	Modelled	Actual	Comment	Reference
Q	-5	GLY	-	expression tag	UNP Q59Z17
Q	-4	HIS	-	expression tag	UNP Q59Z17
Q	-3	HIS	-	expression tag	UNP Q59Z17
Q	-2	HIS	-	expression tag	UNP Q59Z17
Q	-1	GLN	-	expression tag	UNP Q59Z17
Q	0	LEU	-	expression tag	UNP Q59Z17
Q	146	GLN	_	expression tag	UNP Q59Z17
Q	147	LEU	-	expression tag	UNP Q59Z17
Q	148	ASP	-	expression tag	UNP Q59Z17
Q	149	GLY	-	expression tag	UNP Q59Z17
Q	150	ASP	-	expression tag	UNP Q59Z17
Q	151	LEU	-	expression tag	UNP Q59Z17
Q	152	GLU	-	expression tag	UNP Q59Z17
Q	153	ALA	-	expression tag	UNP Q59Z17
Q	154	ALA	-	expression tag	UNP Q59Z17
R	-12	ALA	-	expression tag	UNP Q59Z17
R	-11	HIS	-	expression tag	UNP Q59Z17
R	-10	HIS	-	expression tag	UNP Q59Z17
R	-9	HIS	-	expression tag	UNP Q59Z17
R	-8	HIS	-	expression tag	UNP Q59Z17
R	-7	HIS	-	expression tag	UNP Q59Z17
R	-6	HIS	-	expression tag	UNP Q59Z17
R	-5	GLY	-	expression tag	UNP Q59Z17
R	-4	HIS	-	expression tag	UNP Q59Z17
R	-3	HIS	-	expression tag	UNP Q59Z17
R	-2	HIS	-	expression tag	UNP Q59Z17
R	-1	GLN	-	expression tag	UNP Q59Z17
R	0	LEU	-	expression tag	UNP Q59Z17
R	146	GLN	-	expression tag	UNP Q59Z17
R	147	LEU	-	expression tag	UNP Q59Z17
R	148	ASP	-	expression tag	UNP Q59Z17
R	149	GLY	-	expression tag	UNP Q59Z17
R	150	ASP	-	expression tag	UNP Q59Z17
R	151	LEU	-	expression tag	UNP Q59Z17
R	152	GLU	-	expression tag	UNP Q59Z17
R	153	ALA	-	expression tag	UNP Q59Z17
R	154	ALA	-	expression tag	UNP Q59Z17
S	-12	ALA	-	expression tag	UNP Q59Z17
S	-11	HIS	-	expression tag	UNP $Q59Z17$
S	-10	HIS	-	expression tag	UNP Q59Z17
S	-9	HIS	-	expression tag	UNP $Q59Z17$
S	-8	HIS	-	expression tag	UNP $Q59Z17$

Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference
S	-7	HIS	-	expression tag	UNP Q59Z17
S	-6	HIS - expression tag		UNP Q59Z17	
S	-5	GLY	-	expression tag	UNP Q59Z17
S	-4	HIS	-	expression tag	UNP Q59Z17
S	-3	HIS	-	expression tag	UNP Q59Z17
S	-2	HIS	-	expression tag	UNP Q59Z17
S	-1	GLN	-	expression tag	UNP Q59Z17
S	0	LEU	-	expression tag	UNP Q59Z17
S	146	GLN	-	expression tag	UNP Q59Z17
S	147	LEU	-	expression tag	UNP Q59Z17
S	148	ASP	-	expression tag	UNP Q59Z17
S	149	GLY	-	expression tag	UNP Q59Z17
S	150	ASP	-	expression tag	UNP Q59Z17
S	151	LEU	-	expression tag	UNP Q59Z17
S	152	GLU	-	expression tag	UNP Q59Z17
S	153	ALA	-	expression tag	UNP Q59Z17
S	154	ALA	-	expression tag	UNP Q59Z17
Т	-12	ALA	-	expression tag	UNP Q59Z17
Т	-11	HIS	-	expression tag	UNP Q59Z17
Т	-10	HIS	-	expression tag	UNP Q59Z17
Т	-9	HIS	-	expression tag	UNP Q59Z17
Т	-8	HIS	-	expression tag	UNP Q59Z17
Т	-7	HIS	-	expression tag	UNP Q59Z17
Т	-6	HIS	-	expression tag	UNP Q59Z17
Т	-5	GLY	-	expression tag	UNP Q59Z17
Т	-4	HIS	-	expression tag	UNP Q59Z17
Т	-3	HIS	-	expression tag	UNP Q59Z17
Т	-2	HIS	-	expression tag	UNP Q59Z17
Т	-1	GLN	-	expression tag	UNP Q59Z17
Т	0	LEU	-	expression tag	UNP Q59Z17
Т	146	GLN	-	expression tag	UNP Q59Z17
Т	147	LEU	-	expression tag	UNP Q59Z17
Т	148	ASP	-	expression tag	UNP Q59Z17
Т	149	GLY	-	expression tag	UNP Q59Z17
Т	150	ASP	-	expression tag	UNP Q59Z17
Т	151	LEU	-	expression tag	UNP Q59Z17
Т	152	GLU	-	expression tag	UNP Q59Z17
Т	153	ALA	-	expression tag	UNP Q59Z17
Т	154	ALA	-	expression tag	UNP Q59Z17
U	-12	ALA	-	expression tag	UNP Q59Z17
U	-11	HIS	-	expression tag	UNP Q59Z17
U	-10	HIS	-	expression tag	UNP Q59Z17

Continued from previous page...

Continu	ed from pre	vious page			
Chain	Residue	Modelled	Actual	Comment	Reference
U	-9	HIS	-	expression tag	UNP $Q59Z17$
U	-8	HIS	-	expression tag	UNP $Q59Z17$
U	-7	HIS	-	expression tag	UNP $Q59Z17$
U	-6	HIS	-	expression tag	UNP $Q59Z17$
U	-5	GLY	-	expression tag	UNP $Q59Z17$
U	-4	HIS	-	expression tag	UNP $Q59Z17$
U	-3	HIS	-	expression tag	UNP Q59Z17
U	-2	HIS	-	expression tag	UNP Q59Z17
U	-1	GLN	-	expression tag	UNP $Q59Z17$
U	0	LEU	-	expression tag	UNP $Q59Z17$
U	146	GLN	-	expression tag	UNP $Q59Z17$
U	147	LEU	-	expression tag	UNP $Q59Z17$
U	148	ASP	-	expression tag	UNP Q59Z17
U	149	GLY	-	expression tag	UNP Q59Z17
U	150	ASP	-	expression tag	UNP Q59Z17
U	151	LEU	-	expression tag	UNP Q59Z17
U	152	GLU	-	expression tag	UNP Q59Z17
U	153	ALA	-	expression tag	UNP Q59Z17
U	154	ALA	-	expression tag	UNP Q59Z17
V	-12	ALA	-	expression tag	UNP Q59Z17
V	-11	HIS	-	expression tag	UNP Q59Z17
V	-10	HIS	-	expression tag	UNP Q59Z17
V	-9	HIS	-	expression tag	UNP Q59Z17
V	-8	HIS	-	expression tag	UNP Q59Z17
V	-7	HIS	-	expression tag	UNP Q59Z17
V	-6	HIS	-	expression tag	UNP Q59Z17
V	-5	GLY	-	expression tag	UNP Q59Z17
V	-4	HIS	-	expression tag	UNP Q59Z17
V	-3	HIS	-	expression tag	UNP Q59Z17
V	-2	HIS	-	expression tag	UNP Q59Z17
V	-1	GLN	-	expression tag	UNP Q59Z17
V	0	LEU	-	expression tag	UNP Q59Z17
V	146	GLN	-	expression tag	UNP Q59Z17
V	147	LEU	-	expression tag	UNP Q59Z17
V	148	ASP	-	expression tag	UNP Q59Z17
V	149	GLY	-	expression tag	UNP Q59Z17
V	150	ASP	-	expression tag	UNP $Q59Z17$
V	151	LEU	-	expression tag	UNP $Q59Z17$
V	152	GLU	-	expression tag	UNP Q59Z17
V	153	ALA	-	expression tag	UNP Q59Z17
V	154	ALA	-	expression tag	UNP Q59Z17
W	-12	ALA	-	expression tag	UNP $Q59Z17$

3KIP

Chain	Residue	Modelled	Actual	Comment	Reference
W	-11	HIS	-	expression tag	UNP Q59Z17
W	W -10 HIS - ex		expression tag	UNP Q59Z17	
W	-9	HIS	_	expression tag	UNP Q59Z17
W	-8	HIS	_	expression tag	UNP Q59Z17
W	-7	HIS	-	expression tag	UNP Q59Z17
W	-6	HIS	-	expression tag	UNP Q59Z17
W	-5	GLY	-	expression tag	UNP Q59Z17
W	-4	HIS	-	expression tag	UNP Q59Z17
W	-3	HIS	-	expression tag	UNP Q59Z17
W	-2	HIS	-	expression tag	UNP Q59Z17
W	-1	GLN	-	expression tag	UNP Q59Z17
W	0	LEU	-	expression tag	UNP Q59Z17
W	146	GLN	-	expression tag	UNP Q59Z17
W	147	LEU	-	expression tag	UNP Q59Z17
W	148	ASP	-	expression tag	UNP Q59Z17
W	149	GLY	-	expression tag	UNP Q59Z17
W	150	ASP	-	expression tag	UNP Q59Z17
W	151	LEU	-	expression tag	UNP Q59Z17
W	152	GLU	-	expression tag	UNP Q59Z17
W	153	ALA	-	expression tag	UNP Q59Z17
W	154	ALA	-	expression tag	UNP Q59Z17
Х	-12	ALA	-	expression tag	UNP Q59Z17
Х	-11	HIS	-	expression tag	UNP Q59Z17
Х	-10	HIS	-	expression tag	UNP Q59Z17
Х	-9	HIS	-	expression tag	UNP Q59Z17
Х	-8	HIS	-	expression tag	UNP Q59Z17
X	-7	HIS	-	expression tag	UNP Q59Z17
Х	-6	HIS	-	expression tag	UNP Q59Z17
Х	-5	GLY	-	expression tag	UNP Q59Z17
Х	-4	HIS	-	expression tag	UNP Q59Z17
Х	-3	HIS	-	expression tag	UNP Q59Z17
Х	-2	HIS	-	expression tag	UNP Q59Z17
Х	-1	GLN	-	expression tag	UNP Q59Z17
Х	0	LEU	-	expression tag	UNP Q59Z17
Х	146	GLN	-	expression tag	UNP Q59Z17
Х	147	LEU	-	expression tag	UNP Q59Z17
Х	148	ASP	-	expression tag	UNP Q59Z17
Х	149	GLY	-	expression tag	UNP Q59Z17
X	150	ASP	-	expression tag	UNP $Q59Z17$
X	151	LEU	-	expression tag	UNP Q59Z17
X	152	GLU	-	expression tag	UNP $Q59Z17$
X	153	ALA	-	expression tag	UNP Q59Z17
				Continued	on next page

Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference
Х	154	ALA	-	expression tag	UNP Q59Z17

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	$\begin{array}{c cc} Total & O & S \\ 5 & 4 & 1 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	Е	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	F	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	G	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	Н	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	Ι	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	J	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

• Molecule 3 is 2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL (three-letter code: TRS) (formula: $C_4H_{12}NO_3$).

Chain Residues ZeroOcc AltConf Atoms Mol S Total Κ S Total М Total S Ν S Total Ο Total S Ο Р S Total Ο Q S Total R Total S \mathbf{S} S Total Ο Т Ο S Total U S Total Ο V Total S W Ο S Total Х

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	Δ	1	Total C N O	0	0
5	Л	1	8 4 1 3	0	0
ગ	р	1	Total C N O	0	0
0	D	T	8 4 1 3	0	0
3	C	1	Total C N O	0	0
0	G	T	8 4 1 3	0	
3	T	1	Total C N O	0	0
0	0		8 4 1 3		
3	Ν	1	Total C N O	0	0
0	11	1	8 4 1 3	0	0
3	р	1	Total C N O	0	0
0	T	1	8 4 1 3	0	0
3	Т	1	Total C N O	0	0
0	L	1	8 4 1 3	0	0
3	W	1	Total C N O	0	0
	vv	1	8 4 1 3		0

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	8	Total O 8 8	0	0
4	В	13	Total O 13 13	0	0
4	С	7	Total O 7 7	0	0
4	D	7	Total O 7 7	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	Е	17	Total O 17 17	0	0
4	F	10	Total O 10 10	0	0
4	G	9	Total O 9 9	0	0
4	Н	4	Total O 4 4	0	0
4	Ι	11	Total O 11 11	0	0
4	J	4	Total O 4 4	0	0
4	К	5	TotalO55	0	0
4	L	4	Total O 4 4	0	0
4	М	4	Total O 4 4	0	0
4	Ν	11	Total O 11 11	0	0
4	0	2	Total O 2 2	0	0
4	Р	8	Total O 8 8	0	0
4	Q	7	Total O 7 7	0	0
4	R	13	Total O 13 13	0	0
4	S	4	Total O 4 4	0	0
4	Т	3	Total O 3 3	0	0
4	U	5	Total O 5 5	0	0
4	V	5	Total O 5 5	0	0
4	W	5	$\begin{array}{cc} \text{Total} & \text{O} \\ 5 & 5 \end{array}$	0	0
4	Х	2	Total O 2 2	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 3-dehydroquinase, type II

Chain S:

Chain T:

GLU ALA ALA

ALA HIS HIS HIS HIS HIS GLY GLY

 \bullet Molecule 1: 3-dehydroquinase, type II

• Molecule 1: 3-dehydroquinase, type II

• Molecule 1: 3-dehydroquinase, type II

55%

52%

PRC

CTO ALA 770 ALA 771 HIS 772 HIS 773 HIS 774 HIS 774 HIS 175 HIS 175 HIS 195 HIS 196 V1 197 V1 198 V1 199 V1 196 V1 197 V3 198 V1 199 V1 196 V1 197 V3 198 V1 109 V1 1100 L0 1100 L14 1100 L14 1100 L14 1110 L14 1110 L14 1110 L14 1110 L14 1110 L14 1110 L14 1114 L14 L145

• Molecule 1: 3-dehydroquinase, type II

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 2	Depositor
Cell constants	159.10Å 308.11Å 97.15Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution (Å)	70.68 - 2.95	Depositor
Resolution (A)	70.68 - 2.95	EDS
% Data completeness	99.9 (70.68-2.95)	Depositor
(in resolution range)	99.9(70.68-2.95)	EDS
R_{merge}	(Not available)	Depositor
R _{sym}	0.14	Depositor
$< I/\sigma(I) > 1$	$2.71 (at 2.96 \text{\AA})$	Xtriage
Refinement program	REFMAC	Depositor
B B.	0.203 , 0.245	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.200 , 0.239	DCC
R_{free} test set	5090 reflections (5.03%)	wwPDB-VP
Wilson B-factor (Å ²)	66.6	Xtriage
Anisotropy	0.319	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.30 , 51.3	EDS
L-test for $twinning^2$	$ < L >=0.45, < L^2>=0.28$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.93	EDS
Total number of atoms	27144	wwPDB-VP
Average B, all atoms $(Å^2)$	59.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.59% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: TRS, $\mathrm{SO4}$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	ond lengths	Bond angles		
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	1.16	0/1126	1.18	9/1527~(0.6%)	
1	В	1.25	6/1126~(0.5%)	1.24	11/1527~(0.7%)	
1	С	1.18	2/1126~(0.2%)	1.08	5/1527~(0.3%)	
1	D	1.15	2/1135~(0.2%)	1.20	13/1539~(0.8%)	
1	Е	1.24	5/1143~(0.4%)	1.10	3/1550~(0.2%)	
1	F	1.27	1/1143~(0.1%)	1.13	6/1550~(0.4%)	
1	G	1.19	1/1126~(0.1%)	1.12	6/1527~(0.4%)	
1	Н	1.19	5/1134~(0.4%)	1.11	5/1538~(0.3%)	
1	Ι	1.25	6/1162~(0.5%)	1.08	3/1577~(0.2%)	
1	J	1.07	1/1126~(0.1%)	1.03	5/1527~(0.3%)	
1	Κ	1.06	1/1134~(0.1%)	1.10	6/1538~(0.4%)	
1	L	1.07	1/1134~(0.1%)	1.03	4/1538~(0.3%)	
1	М	1.18	4/1134~(0.4%)	1.15	5/1538~(0.3%)	
1	N	1.19	5/1134~(0.4%)	1.12	4/1538~(0.3%)	
1	0	1.08	1/1134~(0.1%)	1.07	3/1538~(0.2%)	
1	Р	1.10	3/1134~(0.3%)	1.09	5/1538~(0.3%)	
1	Q	1.18	1/1134~(0.1%)	1.13	3/1538~(0.2%)	
1	R	1.14	0/1134	1.03	4/1538~(0.3%)	
1	S	1.15	3/1134~(0.3%)	1.12	3/1538~(0.2%)	
1	Т	1.12	0/1135	1.10	10/1539~(0.6%)	
1	U	1.15	6/1126~(0.5%)	1.10	4/1527~(0.3%)	
1	V	1.01	1/1126~(0.1%)	1.04	3/1527~(0.2%)	
1	W	1.06	1/1143~(0.1%)	1.06	4/1550~(0.3%)	
1	Х	1.06	3/1143~(0.3%)	1.13	6/1550~(0.4%)	
All	All	1.15	$59/\overline{27226}~(0.2\%)$	1.11	130/36924~(0.4%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	G	0	1
1	М	0	1
1	V	0	1
All	All	0	3

All (59) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	S	128	CYS	CB-SG	-10.19	1.65	1.82
1	Q	65	GLU	CG-CD	8.79	1.65	1.51
1	U	65	GLU	CG-CD	8.76	1.65	1.51
1	Е	128	CYS	CB-SG	-8.66	1.67	1.82
1	Ν	128	CYS	CB-SG	-8.65	1.67	1.82
1	V	128	CYS	CB-SG	-7.87	1.68	1.82
1	W	128	CYS	CB-SG	-7.86	1.68	1.82
1	G	128	CYS	CB-SG	-7.83	1.69	1.82
1	Ν	65	GLU	CG-CD	7.81	1.63	1.51
1	С	128	CYS	CB-SG	-7.73	1.69	1.82
1	L	128	CYS	CB-SG	-7.48	1.69	1.82
1	Ι	65	GLU	CG-CD	7.46	1.63	1.51
1	S	65	GLU	CG-CD	7.21	1.62	1.51
1	Κ	128	CYS	CB-SG	-7.21	1.70	1.82
1	U	65	GLU	CB-CG	6.96	1.65	1.52
1	J	65	GLU	CG-CD	6.91	1.62	1.51
1	Ι	140	GLU	CD-OE2	6.90	1.33	1.25
1	Н	111	GLU	CB-CG	6.79	1.65	1.52
1	Ι	65	GLU	CB-CG	6.61	1.64	1.52
1	Н	128	CYS	CB-SG	-6.50	1.71	1.82
1	Р	128	CYS	CB-SG	-6.46	1.71	1.82
1	В	65	GLU	CD-OE2	6.46	1.32	1.25
1	М	128	CYS	CB-SG	-6.38	1.71	1.82
1	S	111	GLU	CB-CG	6.38	1.64	1.52
1	Е	118	TYR	CB-CG	-6.27	1.42	1.51
1	U	111	GLU	CG-CD	6.20	1.61	1.51
1	U	25	THR	CA-CB	6.08	1.69	1.53
1	0	128	CYS	CB-SG	-6.06	1.72	1.82
1	В	37	GLU	CG-CD	6.04	1.61	1.51
1	U	128	CYS	CB-SG	-5.96	1.72	1.81
1	В	65	GLU	CG-CD	5.84	1.60	1.51
1	Р	65	GLU	CG-CD	5.79	1.60	1.51
1	Е	37	GLU	CG-CD	5.74	1.60	1.51
1	М	111	GLU	CB-CG	5.65	1.62	1.52
1	N	23	TYR	CG-CD1	5.61	1.46	1.39

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	Р	107	VAL	CB-CG1	-5.50	1.41	1.52
1	U	111	GLU	CB-CG	5.47	1.62	1.52
1	В	128	CYS	CB-SG	-5.45	1.73	1.81
1	Х	65	GLU	CG-CD	5.45	1.60	1.51
1	М	65	GLU	CG-CD	5.41	1.60	1.51
1	Ι	128	CYS	CB-SG	-5.34	1.73	1.81
1	Ν	75	VAL	CB-CG1	-5.29	1.41	1.52
1	Н	65	GLU	CD-OE2	5.28	1.31	1.25
1	В	23	TYR	C-O	5.28	1.33	1.23
1	С	51	PHE	CD1-CE1	-5.28	1.28	1.39
1	Н	111	GLU	CG-CD	5.25	1.59	1.51
1	D	65	GLU	CG-CD	5.21	1.59	1.51
1	Х	25	THR	CA-CB	5.20	1.66	1.53
1	Ε	71	VAL	CB-CG1	5.18	1.63	1.52
1	Н	81	TYR	CE1-CZ	-5.16	1.31	1.38
1	Ν	23	TYR	CE2-CZ	5.12	1.45	1.38
1	В	113	PHE	CD1-CE1	5.10	1.49	1.39
1	Ι	48	VAL	CB-CG2	-5.09	1.42	1.52
1	Ε	111	GLU	CB-CG	5.09	1.61	1.52
1	Ι	21	GLU	CG-CD	5.08	1.59	1.51
1	D	125	ALA	CA-CB	-5.05	1.41	1.52
1	М	111	GLU	CG-CD	5.02	1.59	1.51
1	Х	114	ARG	CZ-NH1	5.01	1.39	1.33
1	F	80	ALA	CA-CB	-5.01	1.42	1.52

All (130) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	15	LEU	CA-CB-CG	10.34	139.08	115.30
1	D	114	ARG	NE-CZ-NH2	-9.89	115.35	120.30
1	0	15	LEU	CA-CB-CG	9.52	137.19	115.30
1	V	61	ASP	CB-CG-OD1	9.22	126.60	118.30
1	А	15	LEU	CB-CG-CD1	-8.93	95.82	111.00
1	U	110	ARG	NE-CZ-NH1	8.72	124.66	120.30
1	В	15	LEU	CA-CB-CG	8.53	134.91	115.30
1	Ν	15	LEU	CA-CB-CG	8.23	134.23	115.30
1	U	41	LEU	CA-CB-CG	8.13	134.01	115.30
1	G	16	GLY	N-CA-C	-7.75	93.72	113.10
1	W	15	LEU	CA-CB-CG	7.73	133.08	115.30
1	D	89	ARG	NE-CZ-NH1	7.38	123.99	120.30
1	S	15	LEU	CA-CB-CG	7.29	132.06	115.30
1	Х	147	LEU	CA-CB-CG	7.18	131.82	115.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Q	16	GLY	N-CA-C	-7.01	95.56	113.10
1	D	15	LEU	CA-CB-CG	6.94	131.26	115.30
1	D	30	ASP	CB-CG-OD1	-6.86	112.12	118.30
1	Т	89	ARG	NE-CZ-NH2	-6.75	116.93	120.30
1	G	15	LEU	CA-CB-CG	6.74	130.81	115.30
1	Ι	114	ARG	NE-CZ-NH2	-6.73	116.93	120.30
1	D	0	LEU	CA-CB-CG	6.73	130.78	115.30
1	D	16	GLY	N-CA-C	-6.71	96.31	113.10
1	Κ	15	LEU	CA-CB-CG	6.66	130.63	115.30
1	U	16	GLY	N-CA-C	-6.60	96.60	113.10
1	М	116	GLN	CB-CA-C	-6.59	97.22	110.40
1	М	114	ARG	NE-CZ-NH2	-6.58	117.01	120.30
1	D	122	LYS	CD-CE-NZ	-6.54	96.66	111.70
1	В	89	ARG	NE-CZ-NH2	-6.51	117.05	120.30
1	R	0	LEU	CA-CB-CG	6.44	130.12	115.30
1	Н	49	LEU	CA-CB-CG	6.43	130.08	115.30
1	Ν	89	ARG	NE-CZ-NH2	-6.39	117.10	120.30
1	Е	16	GLY	N-CA-C	-6.39	97.13	113.10
1	Р	110	ARG	NE-CZ-NH1	6.37	123.48	120.30
1	Е	15	LEU	CA-CB-CG	6.36	129.92	115.30
1	Ν	41	LEU	CA-CB-CG	6.33	129.86	115.30
1	S	16	GLY	N-CA-C	-6.32	97.31	113.10
1	С	16	GLY	N-CA-C	-6.29	97.38	113.10
1	Х	14	LEU	CB-CG-CD1	-6.25	100.38	111.00
1	G	90	ASP	CB-CG-OD1	6.21	123.89	118.30
1	В	16	GLY	N-CA-C	-6.21	97.57	113.10
1	В	90	ASP	CB-CG-OD2	-6.21	112.71	118.30
1	М	16	GLY	N-CA-C	-6.20	97.59	113.10
1	Р	15	LEU	CA-CB-CG	6.19	129.55	115.30
1	G	15	LEU	CB-CG-CD1	-6.19	100.48	111.00
1	Т	110	ARG	NE-CZ-NH1	6.19	123.39	120.30
1	A	16	GLY	N-CA-C	-6.19	97.63	113.10
1	F	41	LEU	CA-CB-CG	6.16	129.47	115.30
1	Е	147	LEU	CA-CB-CG	6.16	129.46	115.30
1	0	16	GLY	N-CA-C	-6.10	97.85	113.10
1	В	68	ARG	NE-CZ-NH1	6.09	123.35	120.30
1	S	14	LEU	CB-CG-CD1	-6.08	100.66	111.00
1	W	16	GLY	N-CA-C	-6.08	97.91	113.10
1	D	114	ARG	NE-CZ-NH1	6.05	123.32	120.30
1	С	89	ARG	NE-CZ-NH1	6.04	123.32	120.30
1	A	114	ARG	NE-CZ-NH1	-6.02	117.29	120.30
1	Ν	68	ARG	NE-CZ-NH2	-6.02	$1\overline{17.29}$	120.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	R	15	LEU	CB-CG-CD2	-6.00	100.80	111.00
1	Κ	18	ARG	N-CA-C	5.99	127.17	111.00
1	J	89	ARG	NE-CZ-NH2	-5.96	117.32	120.30
1	Н	30	ASP	CB-CG-OD2	5.91	123.62	118.30
1	K	82	THR	CB-CA-C	-5.91	95.64	111.60
1	L	15	LEU	CA-CB-CG	5.91	128.89	115.30
1	Q	45	ASP	CB-CG-OD1	-5.90	112.99	118.30
1	W	147	LEU	CA-CB-CG	5.90	128.87	115.30
1	L	147	LEU	CA-CB-CG	5.89	128.86	115.30
1	С	89	ARG	NE-CZ-NH2	-5.83	117.38	120.30
1	А	90	ASP	CB-CG-OD2	-5.78	113.09	118.30
1	Т	15	LEU	CA-CB-CG	5.77	128.57	115.30
1	А	0	LEU	CA-CB-CG	5.76	128.55	115.30
1	V	16	GLY	N-CA-C	-5.74	98.76	113.10
1	В	114	ARG	NE-CZ-NH2	-5.73	117.43	120.30
1	В	28	LEU	CB-CG-CD1	5.70	120.69	111.00
1	D	90	ASP	CB-CG-OD1	5.69	123.42	118.30
1	U	15	LEU	CB-CG-CD2	-5.69	101.33	111.00
1	Р	0	LEU	CA-CB-CG	5.68	128.38	115.30
1	Т	18	ARG	N-CA-C	5.65	126.25	111.00
1	Х	62	ARG	NE-CZ-NH1	5.65	123.12	120.30
1	Н	110	ARG	NE-CZ-NH2	-5.64	117.48	120.30
1	L	16	GLY	N-CA-C	-5.60	99.10	113.10
1	Х	41	LEU	CA-CB-CG	5.58	128.12	115.30
1	Т	93	LEU	CB-CG-CD1	-5.55	101.57	111.00
1	R	16	GLY	N-CA-C	-5.54	99.24	113.10
1	F	18	ARG	N-CA-C	5.53	125.94	111.00
1	F	15	LEU	CB-CA-C	5.53	120.70	110.20
1	0	15	LEU	CB-CG-CD1	-5.53	101.61	111.00
1	С	15	LEU	CA-CB-CG	5.51	127.96	115.30
1	В	18	ARG	N-CA-C	5.48	125.81	111.00
1	G	61	ASP	CB-CG-OD1	5.47	123.23	118.30
1	F	114	ARG	NE-CZ-NH1	5.44	123.02	120.30
1	Н	15	LEU	CA-CB-CG	5.43	127.80	115.30
1	Q	90	ASP	CB-CG-OD1	5.43	123.19	118.30
1	Т	49	LEU	CA-CB-CG	5.43	127.78	115.30
1	Ι	0	LEU	CA-CB-CG	5.42	127.78	115.30
1	J	15	LEU	CA-CB-CG	5.41	127.75	115.30
1	С	14	LEU	CA-CB-CG	5.40	127.72	115.30
1	Х	15	LEU	CA-CB-CG	5.38	127.67	115.30
1	J	16	GLY	N-CA-C	-5.37	99.69	113.10
1	Р	114	ARG	NE-CZ-NH1	-5.37	117.62	120.30

Mol	Chain	\mathbf{Res}	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
1	Т	116	GLN	CB-CA-C	-5.35	99.69	110.40
1	V	15	LEU	CA-CB-CG	5.34	127.59	115.30
1	D	89	ARG	NE-CZ-NH2	-5.33	117.64	120.30
1	В	41	LEU	CB-CG-CD1	5.31	120.03	111.00
1	D	18	ARG	NE-CZ-NH1	-5.30	117.65	120.30
1	J	61	ASP	CB-CG-OD1	5.29	123.06	118.30
1	R	18	ARG	N-CA-C	5.29	125.29	111.00
1	Κ	147	LEU	CA-CB-CG	5.28	127.44	115.30
1	А	130	LEU	CB-CG-CD2	-5.26	102.05	111.00
1	Κ	15	LEU	CB-CG-CD1	-5.26	102.05	111.00
1	А	93	LEU	CB-CG-CD1	-5.24	102.10	111.00
1	А	121	ASP	CB-CG-OD1	5.24	123.01	118.30
1	D	18	ARG	N-CA-C	5.24	125.13	111.00
1	L	12	LEU	CA-CB-CG	-5.23	103.26	115.30
1	Т	61	ASP	CB-CG-OD1	5.22	123.00	118.30
1	F	61	ASP	CB-CG-OD1	5.20	122.98	118.30
1	Х	12	LEU	CA-CB-CG	-5.20	103.35	115.30
1	Ι	114	ARG	NE-CZ-NH1	5.17	122.88	120.30
1	Т	89	ARG	NE-CZ-NH1	5.16	122.88	120.30
1	М	146	GLN	N-CA-C	5.16	124.92	111.00
1	Т	16	GLY	N-CA-C	-5.15	100.22	113.10
1	W	69	GLN	CB-CA-C	-5.14	100.12	110.40
1	В	14	LEU	CB-CG-CD1	-5.12	102.29	111.00
1	Р	121	ASP	CB-CG-OD1	-5.12	113.69	118.30
1	F	16	GLY	N-CA-C	-5.09	100.39	113.10
1	Н	30	ASP	CB-CG-OD1	-5.06	113.75	118.30
1	Κ	127	ILE	CB-CA-C	-5.06	101.48	111.60
1	J	12	LEU	CA-CB-CG	-5.03	103.72	115.30
1	G	12	LEU	CA-CB-CG	-5.02	103.74	115.30
1	В	0	LEU	CA-CB-CG	5.01	126.83	115.30
1	D	90	ASP	CB-CG-OD2	-5.01	113.79	118.30
1	М	12	LEU	CA-CB-CG	-5.01	103.78	115.30

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	G	45	ASP	Peptide
1	М	145	TYR	Peptide
1	V	145	TYR	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1108	0	1117	25	0
1	В	1108	0	1117	32	0
1	С	1108	0	1117	30	0
1	D	1117	0	1125	24	0
1	Е	1125	0	1136	25	0
1	F	1125	0	1136	29	0
1	G	1108	0	1117	23	0
1	Н	1116	0	1128	22	0
1	Ι	1142	0	1150	28	0
1	J	1108	0	1117	29	0
1	Κ	1116	0	1128	24	0
1	L	1116	0	1128	29	0
1	М	1116	0	1128	35	0
1	Ν	1116	0	1128	30	0
1	0	1116	0	1128	23	0
1	Р	1116	0	1128	27	0
1	Q	1116	0	1128	30	0
1	R	1116	0	1128	26	0
1	S	1116	0	1128	33	0
1	Т	1117	0	1125	40	0
1	U	1108	0	1117	33	0
1	V	1108	0	1117	28	0
1	W	1125	0	1136	33	0
1	Х	1125	0	1136	28	0
2	А	10	0	0	0	0
2	В	5	0	0	0	0
2	С	5	0	0	0	0
2	D	5	0	0	0	0
2	Е	5	0	0	0	0
2	F	5	0	0	0	0
2	G	5	0	0	0	0
2	Н	5	0	0	0	0
2	Ι	5	0	0	0	0
2	J	5	0	0	0	0
2	K	5	0	0	0	0
2	Μ	5	0	0	0	0
2	Ν	5	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	0	5	0	0	0	0
$\frac{2}{2}$	P	5	0	0	0	0
2	Q	5	0	0	0	0
2	R	5	0	0	0	0
2	S	5	0	0	0	0
2	Т	5	0	0	0	0
2	U	5	0	0	0	0
2	V	5	0	0	0	0
2	W	5	0	0	0	0
2	Х	5	0	0	0	0
3	А	8	0	12	0	0
3	D	8	0	12	1	0
3	G	8	0	12	0	0
3	J	8	0	12	0	0
3	N	8	0	12	1	0
3	Р	8	0	12	0	0
3	Т	8	0	12	0	0
3	W	8	0	12	1	0
4	А	8	0	0	0	0
4	В	13	0	0	2	0
4	С	7	0	0	1	0
4	D	7	0	0	1	0
4	Е	17	0	0	1	0
4	F	10	0	0	0	0
4	G	9	0	0	0	0
4	Н	4	0	0	0	0
4	Ι	11	0	0	1	0
4	J	4	0	0	0	0
4	K	5	0	0	0	0
4	L	4	0	0	0	0
4	М	4	0	0	0	0
4	N	11	0	0	0	0
4	0	2	0	0	0	0
4	Р	8	0	0	0	0
4	Q	7	0	0	0	0
4	R	13	0	0	0	0
4	S	4	0	0	1	0
4	Т	3	0	0	0	0
4	U	5	0	0	0	0
4	V	5	0	0	1	0
4	W	5	0	0	0	0
4	Х	2	0	0	0	0

Continued from previous page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
All	All	27144	0	27139	646	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 12.

All (646) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:N:146:GLN:HA	1:N:146:GLN:NE2	1.68	1.07
1:J:12:LEU:O	1:J:15:LEU:HD22	1.54	1.07
1:N:146:GLN:HA	1:N:146:GLN:HE21	0.94	1.06
1:T:103:HIS:HB2	1:T:128:CYS:HB2	1.44	0.99
1:W:103:HIS:HB2	1:W:128:CYS:HB2	1.46	0.98
1:V:12:LEU:O	1:V:15:LEU:HD22	1.66	0.96
1:M:12:LEU:O	1:M:15:LEU:HD22	1.66	0.96
1:N:146:GLN:HE21	1:N:146:GLN:CA	1.80	0.94
1:U:13:ASN:HD22	1:U:13:ASN:H	1.11	0.92
1:M:0:LEU:N	1:M:147:LEU:HG	1.84	0.91
1:U:15:LEU:HD22	1:U:15:LEU:H	1.36	0.90
1:U:103:HIS:HB2	1:U:128:CYS:HB2	1.54	0.90
1:R:12:LEU:O	1:R:15:LEU:HD22	1.71	0.89
1:W:12:LEU:O	1:W:15:LEU:HD22	1.70	0.89
1:X:12:LEU:O	1:X:15:LEU:CD2	2.21	0.88
1:I:103:HIS:HB2	1:I:128:CYS:HB2	1.54	0.88
1:S:12:LEU:O	1:S:15:LEU:HD22	1.74	0.87
1:K:12:LEU:O	1:K:15:LEU:HD22	1.75	0.87
1:P:12:LEU:O	1:P:15:LEU:HD22	1.76	0.86
1:Q:15:LEU:HD22	1:Q:15:LEU:H	1.38	0.86
1:T:12:LEU:O	1:T:15:LEU:HD22	1.76	0.86
1:F:12:LEU:O	1:F:15:LEU:HD22	1.74	0.86
1:S:23:TYR:O	1:S:23:TYR:CD2	2.30	0.83
1:M:103:HIS:HB2	1:M:128:CYS:HB2	1.61	0.83
1:T:12:LEU:O	1:T:15:LEU:CD2	2.27	0.83
1:H:23:TYR:CD2	1:H:23:TYR:O	2.32	0.82
1:G:24:GLY:O	1:G:26:THR:N	2.12	0.82
1:R:103:HIS:HB2	1:R:128:CYS:HB2	1.62	0.81
1:L:33:GLN:O	1:L:37:GLU:HG2	1.80	0.81
1:B:12:LEU:O	1:B:15:LEU:HD22	1.80	0.80
1:0:12:LEU:O	1:O:15:LEU:HD22	1.80	0.80
1:C:12:LEU:O	1:C:15:LEU:HD22	1.81	0.80
1:N:12:LEU:O	1:N:15:LEU:HD22	1.81	0.80

	le de pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:G:103:HIS:HB2	1:G:128:CYS:HB2	1.61	0.79
1:M:8:ASN:HD22	1:M:12:LEU:HD13	1.46	0.79
1:M:12:LEU:O	1:M:15:LEU:CD2	2.30	0.79
1:T:146:GLN:HA	1:T:146:GLN:NE2	1.98	0.79
1:C:24:GLY:O	1:C:26:THR:N	2.14	0.78
1:E:103:HIS:HB2	1:E:128:CYS:HB2	1.64	0.78
1:J:8:ASN:HD22	1:J:12:LEU:HD13	1.47	0.78
1:H:12:LEU:O	1:H:15:LEU:HD22	1.84	0.78
1:N:39:ALA:HB2	1:N:48:VAL:HG23	1.66	0.78
1:W:8:ASN:HD22	1:W:12:LEU:HD13	1.49	0.77
1:G:12:LEU:O	1:G:15:LEU:HD22	1.84	0.77
1:M:0:LEU:H2	1:M:147:LEU:HG	1.48	0.76
1:B:65:GLU:HG3	1:B:69:GLN:NE2	2.01	0.75
1:P:8:ASN:HD22	1:P:12:LEU:HD13	1.51	0.75
1:W:65:GLU:O	1:W:69:GLN:HG3	1.86	0.75
1:E:12:LEU:O	1:E:15:LEU:HD22	1.86	0.75
1:A:44:ASN:O	1:A:45:ASP:HB2	1.86	0.75
1:T:146:GLN:HA	1:T:146:GLN:HE21	1.49	0.74
1:X:12:LEU:O	1:X:15:LEU:HD22	1.85	0.74
1:D:103:HIS:HB2	1:D:128:CYS:HB2	1.68	0.74
1:L:12:LEU:O	1:L:15:LEU:HD22	1.88	0.74
1:M:116:GLN:HA	1:M:116:GLN:OE1	1.87	0.74
1:Q:12:LEU:O	1:Q:15:LEU:HD22	1.88	0.74
1:B:47:GLU:OE2	1:B:49:LEU:HD21	1.87	0.73
1:I:13:ASN:HD22	1:I:13:ASN:H	1.33	0.73
1:R:12:LEU:O	1:R:15:LEU:CD2	2.37	0.73
1:T:-1:GLN:OE1	1:T:-1:GLN:HA	1.89	0.73
1:I:13:ASN:H	1:I:13:ASN:ND2	1.86	0.73
1:J:12:LEU:O	1:J:15:LEU:CD2	2.34	0.72
1:Q:24:GLY:O	1:Q:26:THR:N	2.23	0.72
1:C:15:LEU:HD22	1:C:15:LEU:H	1.53	0.72
1:M:116:GLN:OE1	1:M:116:GLN:CA	2.37	0.72
1:V:12:LEU:O	1:V:15:LEU:CD2	2.38	0.72
1:U:13:ASN:H	1:U:13:ASN:ND2	1.85	0.71
1:J:103:HIS:HB2	1:J:128:CYS:HB2	1.70	0.71
1:J:23:TYR:CD2	1:J:23:TYR:O	2.44	0.71
1:G:65:GLU:O	1:G:69:GLN:HG3	1.90	0.70
1:S:62:ARG:HG3	1:S:62:ARG:HH11	1.57	0.70
1:D:12:LEU:O	1:D:15:LEU:HD22	1.90	0.70
1:A:8:ASN:HD22	1:A:12:LEU:HD13	1.56	0.70
1:B:12:LEU:O	1:B:15:LEU:CD2	2.40	0.69

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:U:12:LEU:O	1:U:15:LEU:HD22	1.91	0.69
1:B:23:TYR:O	1:B:23:TYR:CD1	2.47	0.68
1:K:8:ASN:ND2	1:K:135:TYR:OH	2.26	0.68
1:E:23:TYR:O	1:E:23:TYR:CD2	2.47	0.68
1:N:103:HIS:HB2	1:N:128:CYS:HB2	1.76	0.67
1:J:28:LEU:O	1:J:32:GLU:HG3	1.95	0.67
1:A:12:LEU:O	1:A:15:LEU:HD22	1.95	0.67
1:Q:15:LEU:HD22	1:Q:15:LEU:N	2.10	0.67
1:M:146:GLN:HA	1:M:146:GLN:NE2	2.09	0.66
1:F:8:ASN:O	1:F:52:GLN:HG2	1.95	0.66
1:F:103:HIS:HB2	1:F:128:CYS:HB2	1.77	0.66
1:H:65:GLU:OE1	1:H:65:GLU:HA	1.95	0.66
1:I:8:ASN:HD22	1:I:12:LEU:HD13	1.59	0.66
1:L:12:LEU:O	1:L:15:LEU:CD2	2.42	0.66
1:G:44:ASN:O	1:G:44:ASN:ND2	2.28	0.66
1:N:74:VAL:HG23	1:N:97:ILE:HG21	1.77	0.65
1:S:116:GLN:HE21	1:S:116:GLN:N	1.94	0.65
1:C:8:ASN:ND2	1:C:135:TYR:OH	2.30	0.65
1:V:23:TYR:CG	1:V:23:TYR:O	2.50	0.65
1:R:13:ASN:H	1:R:13:ASN:ND2	1.95	0.64
1:K:12:LEU:O	1:K:15:LEU:CD2	2.44	0.64
1:S:83:HIS:HD2	1:S:116:GLN:O	1.81	0.64
1:F:83:HIS:HD2	1:F:116:GLN:O	1.81	0.64
1:R:10:PRO:HG3	1:R:81:TYR:CE2	2.32	0.64
1:R:23:TYR:CG	1:R:23:TYR:O	2.50	0.64
1:V:103:HIS:HB2	1:V:128:CYS:HB2	1.80	0.64
1:X:93:LEU:HD21	1:X:122:LYS:HD2	1.81	0.63
1:N:39:ALA:CB	1:N:48:VAL:HG23	2.27	0.63
1:Q:13:ASN:H	1:Q:13:ASN:HD22	1.47	0.63
1:E:15:LEU:HD22	1:E:15:LEU:H	1.64	0.63
1:B:83:HIS:HE1	4:B:161:HOH:O	1.82	0.62
1:C:12:LEU:O	1:C:15:LEU:CD2	2.48	0.62
1:V:45:ASP:OD1	1:V:45:ASP:N	2.32	0.62
1:Q:15:LEU:H	1:Q:15:LEU:CD2	2.12	0.62
1:Q:8:ASN:HD22	1:Q:12:LEU:HD13	1.64	0.62
1:Q:106:ASN:ND2	1:Q:108:HIS:H	1.96	0.62
1:L:51:PHE:CD1	1:L:62:ARG:HD3	2.35	0.62
1:B:83:HIS:HD2	1:B:116:GLN:O	1.83	0.62
1:O:8:ASN:ND2	1:0:135:TYR:OH	2.32	0.61
1:U:13:ASN:HD22	1:U:13:ASN:N	1.91	0.61
1:V:1:VAL:O	1:V:2:LYS:HD2	1.98	0.61

	1 5	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:M:45:ASP:OD1	1:M:45:ASP:N	2.34	0.61
1:D:8:ASN:ND2	1:D:135:TYR:OH	2.32	0.61
1:X:103:HIS:HB2	1:X:128:CYS:HB2	1.81	0.61
1:D:24:GLY:O	1:D:26:THR:N	2.30	0.61
1:D:92:LEU:HD13	1:D:99:PHE:CD1	2.36	0.61
1:E:12:LEU:O	1:E:15:LEU:CD2	2.49	0.61
1:H:10:PRO:O	1:H:11:ASN:HB2	2.01	0.61
1:A:103:HIS:HB2	1:A:128:CYS:HB2	1.82	0.60
1:N:65:GLU:O	1:N:69:GLN:HG3	2.00	0.60
1:L:8:ASN:HD22	1:L:12:LEU:HD13	1.67	0.60
1:U:23:TYR:CG	1:U:23:TYR:O	2.55	0.60
1:L:62:ARG:HH11	1:L:62:ARG:HG3	1.67	0.60
1:D:146:GLN:HA	1:D:146:GLN:NE2	2.17	0.60
1:P:55:THR:OG1	1:R:57:GLY:HA3	2.01	0.60
1:D:23:TYR:O	1:D:23:TYR:CD2	2.54	0.59
1:R:13:ASN:H	1:R:13:ASN:HD22	1.48	0.59
1:P:116:GLN:OE1	1:P:116:GLN:HA	2.00	0.59
1:Q:15:LEU:N	1:Q:15:LEU:CD2	2.66	0.59
1:D:114:ARG:HD3	4:D:160:HOH:O	2.02	0.59
1:A:8:ASN:ND2	1:A:135:TYR:OH	2.33	0.59
1:A:28:LEU:O	1:A:32:GLU:HG3	2.03	0.59
1:F:15:LEU:HD22	1:F:15:LEU:H	1.67	0.59
1:U:15:LEU:H	1:U:15:LEU:CD2	2.13	0.59
1:U:15:LEU:CD2	1:U:15:LEU:N	2.65	0.59
1:B:33:GLN:HA	1:B:33:GLN:OE1	2.02	0.59
1:W:32:GLU:HB3	1:W:50:VAL:HG11	1.85	0.59
1:A:85:SER:OG	1:A:88:ILE:HG13	2.02	0.59
1:Q:12:LEU:O	1:Q:15:LEU:CD2	2.50	0.59
1:U:24:GLY:O	1:U:26:THR:N	2.35	0.59
1:W:3:LYS:HG2	1:W:71:VAL:HA	1.84	0.59
1:L:3:LYS:HE3	1:L:69:GLN:O	2.02	0.58
1:U:15:LEU:HD22	1:U:15:LEU:N	2.07	0.58
1:M:146:GLN:O	1:M:147:LEU:O	2.22	0.58
1:C:114:ARG:HD3	4:C:156:HOH:O	2.03	0.58
1:G:4:VAL:HB	1:G:48:VAL:HG22	1.86	0.58
1:L:15:LEU:HD22	1:L:15:LEU:H	1.66	0.58
1:P:73:PHE:CE1	1:P:100:ILE:HG13	2.38	0.58
1:P:12:LEU:O	1:P:15:LEU:CD2	2.50	0.57
1:M:128:CYS:O	1:S:125:ALA:HB1	2.04	0.57
1:T:93:LEU:HD21	1:T:122:LYS:HD2	1.85	0.57
1:H:8:ASN:ND2	1:H:135:TYR:OH	2.37	0.57

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:L:8:ASN:ND2	1:L:135:TYR:OH	2.37	0.57
1:T:-1:GLN:OE1	1:T:-1:GLN:CA	2.52	0.57
1:G:10:PRO:HG3	1:G:81:TYR:CE2	2.39	0.57
1:B:10:PRO:HG3	1:B:81:TYR:CE2	2.40	0.57
1:W:15:LEU:HD22	1:W:15:LEU:H	1.69	0.57
1:A:10:PRO:O	1:A:11:ASN:HB2	2.04	0.57
1:G:45:ASP:N	1:G:45:ASP:OD1	2.38	0.57
1:T:106:ASN:ND2	1:T:108:HIS:H	2.03	0.57
1:D:8:ASN:O	1:D:52:GLN:HG2	2.06	0.56
1:Q:65:GLU:O	1:Q:69:GLN:HG3	2.04	0.56
1:N:8:ASN:HD22	1:N:12:LEU:HD13	1.69	0.56
1:S:8:ASN:HB3	1:S:12:LEU:HD13	1.87	0.56
1:U:23:TYR:O	1:U:23:TYR:CD2	2.58	0.56
1:X:15:LEU:CD2	1:X:15:LEU:H	2.18	0.56
1:L:15:LEU:CD2	1:L:15:LEU:H	2.19	0.56
1:V:106:ASN:ND2	1:V:108:HIS:H	2.03	0.56
1:D:12:LEU:O	1:D:15:LEU:CD2	2.54	0.56
1:E:5:LEU:HD12	1:E:49:LEU:O	2.05	0.56
1:J:106:ASN:HD22	1:J:106:ASN:C	2.09	0.56
1:N:39:ALA:HB2	1:N:48:VAL:CG2	2.34	0.56
1:U:106:ASN:ND2	1:U:108:HIS:H	2.03	0.56
1:H:23:TYR:CD2	1:H:23:TYR:C	2.79	0.56
1:P:103:HIS:HB2	1:P:128:CYS:CB	2.36	0.56
1:P:73:PHE:HE1	1:P:100:ILE:HG13	1.71	0.56
1:H:76:ILE:HG23	1:H:76:ILE:O	2.06	0.55
1:T:83:HIS:HD2	1:T:116:GLN:O	1.88	0.55
1:A:69:GLN:HB3	1:N:17:THR:HG22	1.87	0.55
1:I:32:GLU:O	1:I:36:ILE:HG13	2.06	0.55
1:U:12:LEU:O	1:U:15:LEU:CD2	2.54	0.55
1:O:66:ALA:HA	1:O:69:GLN:HG3	1.89	0.55
1:P:10:PRO:O	1:P:11:ASN:HB2	2.07	0.55
1:Q:103:HIS:HB2	1:Q:128:CYS:HB2	1.89	0.55
1:A:127:ILE:HD11	1:G:130:LEU:HD11	1.89	0.54
1:K:13:ASN:HD22	1:K:13:ASN:H	1.55	0.54
1:R:92:LEU:HD13	1:R:99:PHE:CD1	2.42	0.54
1:E:8:ASN:O	1:E:52:GLN:HG2	2.08	0.54
1:F:103:HIS:HB2	1:F:128:CYS:CB	2.37	0.54
1:V:4:VAL:HB	1:V:48:VAL:HG22	1.87	0.54
1:0:117:SER:HB3	1:0:120:SER:OG	2.07	0.54
1:S:51:PHE:CD1	1:S:62:ARG:HD3	2.42	0.54
1:N:56:GLU:OE1	3:N:156:TRS:H21	2.07	0.54

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:O:106:ASN:ND2	1:O:108:HIS:H	2.06	0.54
1:P:74:VAL:HG23	1:P:97:ILE:HG21	1.90	0.54
1:K:11:ASN:O	1:K:14:LEU:HB2	2.08	0.54
1:A:55:THR:OG1	1:C:57:GLY:HA3	2.08	0.54
1:K:4:VAL:HB	1:K:48:VAL:HG22	1.90	0.54
1:Q:106:ASN:HD22	1:Q:106:ASN:C	2.11	0.54
1:R:8:ASN:ND2	1:R:135:TYR:OH	2.41	0.54
1:H:8:ASN:O	1:H:52:GLN:HG2	2.08	0.53
1:I:4:VAL:HB	1:I:48:VAL:HG22	1.90	0.53
1:0:10:PRO:HA	1:0:54:ASN:OD1	2.07	0.53
1:P:103:HIS:HB2	1:P:128:CYS:HB2	1.89	0.53
1:T:8:ASN:HD22	1:T:12:LEU:HD13	1.73	0.53
1:N:14:LEU:O	1:N:17:THR:OG1	2.23	0.53
1:V:47:GLU:OE2	1:V:49:LEU:HD21	2.07	0.53
1:B:106:ASN:C	1:B:106:ASN:HD22	2.11	0.53
1:O:58:PHE:N	1:O:58:PHE:CD1	2.73	0.53
1:R:15:LEU:HD22	1:R:15:LEU:H	1.72	0.53
1:I:7:ILE:HB	1:I:76:ILE:HG13	1.91	0.53
1:I:106:ASN:ND2	1:I:108:HIS:H	2.06	0.53
1:U:28:LEU:O	1:U:32:GLU:HG3	2.09	0.53
1:H:10:PRO:HA	1:H:54:ASN:OD1	2.09	0.53
1:M:146:GLN:HA	1:M:146:GLN:HE21	1.73	0.53
1:U:8:ASN:ND2	1:U:135:TYR:OH	2.42	0.53
1:R:115:HIS:N	1:R:115:HIS:CD2	2.76	0.53
1:R:15:LEU:HD23	1:R:15:LEU:O	2.08	0.53
1:J:23:TYR:O	1:J:23:TYR:CG	2.62	0.52
1:K:24:GLY:O	1:K:26:THR:N	2.37	0.52
1:I:8:ASN:ND2	1:I:77:ASN:HB3	2.24	0.52
1:U:106:ASN:O	1:U:109:GLN:HB2	2.09	0.52
1:C:1:VAL:HG23	1:C:145:TYR:O	2.09	0.52
1:F:13:ASN:HD22	1:F:13:ASN:H	1.58	0.52
1:P:129:GLY:C	1:V:125:ALA:HB2	2.30	0.52
1:F:74:VAL:HG23	1:F:97:ILE:HG21	1.92	0.52
1:G:83:HIS:HD2	1:G:116:GLN:O	1.93	0.52
1:S:93:LEU:HD11	1:S:122:LYS:HG3	1.91	0.52
1:C:44:ASN:O	1:C:45:ASP:HB2	2.10	0.52
1:D:57:GLY:HA3	1:E:55:THR:OG1	2.10	0.52
1:N:115:HIS:N	1:N:115:HIS:CD2	2.77	0.52
1:Q:32:GLU:HG2	1:Q:50:VAL:HG21	1.92	0.52
1:S:23:TYR:CD2	1:S:23:TYR:C	2.82	0.52
1:M:10:PRO:O	1:M:11:ASN:HB2	2.10	0.52

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:W:28:LEU:O	1:W:32:GLU:HG3	2.09	0.52
1:E:98:PRO:HA	4:E:158:HOH:O	2.10	0.52
1:B:106:ASN:ND2	1:B:108:HIS:H	2.08	0.51
1:G:80:ALA:HB1	1:I:86:VAL:HG12	1.92	0.51
1:T:101:GLU:HB3	1:T:126:VAL:HG13	1.91	0.51
1:U:67:LYS:HD3	1:U:95:THR:O	2.10	0.51
1:Q:8:ASN:O	1:Q:52:GLN:HG2	2.11	0.51
1:J:106:ASN:ND2	1:J:108:HIS:H	2.09	0.51
1:K:103:HIS:HB2	1:K:128:CYS:HB2	1.91	0.51
1:T:96:ALA:HB2	1:U:18:ARG:HD3	1.93	0.51
1:E:106:ASN:ND2	1:E:108:HIS:H	2.09	0.51
1:J:112:PRO:HA	1:J:115:HIS:CE1	2.46	0.51
1:W:95:THR:OG1	1:W:97:ILE:HD12	2.11	0.51
1:C:103:HIS:HB2	1:C:128:CYS:HB2	1.93	0.51
1:G:8:ASN:O	1:G:52:GLN:HG2	2.11	0.51
1:P:8:ASN:ND2	1:P:12:LEU:HD13	2.23	0.51
1:Q:106:ASN:ND2	1:Q:106:ASN:C	2.63	0.51
1:S:12:LEU:O	1:S:15:LEU:CD2	2.54	0.51
1:W:65:GLU:HA	1:W:68:ARG:NH2	2.26	0.51
1:R:15:LEU:CD2	1:R:15:LEU:N	2.73	0.51
1:M:8:ASN:O	1:M:52:GLN:HA	2.11	0.50
1:F:12:LEU:O	1:F:15:LEU:CD2	2.54	0.50
1:O:100:ILE:HD11	1:0:141:TYR:CD1	2.46	0.50
1:G:8:ASN:ND2	1:G:135:TYR:OH	2.41	0.50
1:L:8:ASN:ND2	1:L:77:ASN:HB3	2.26	0.50
1:T:73:PHE:CE1	1:T:100:ILE:HG13	2.46	0.50
1:C:4:VAL:HB	1:C:48:VAL:HG22	1.92	0.50
1:B:65:GLU:OE2	1:N:68:ARG:NH2	2.44	0.50
1:0:1:VAL:HG23	1:0:145:TYR:0	2.12	0.50
1:B:17:THR:HG21	1:M:68:ARG:HB2	1.93	0.50
1:L:3:LYS:HB3	1:L:71:VAL:HA	1.93	0.50
1:T:23:TYR:CD2	1:T:23:TYR:O	2.65	0.50
1:A:68:ARG:HB3	1:N:17:THR:HG21	1.94	0.50
1:N:58:PHE:N	1:N:58:PHE:CD1	2.79	0.50
1:R:23:TYR:O	1:R:23:TYR:CD1	2.65	0.50
1:V:15:LEU:CD2	1:V:15:LEU:H	2.25	0.50
1:T:73:PHE:HE1	1:T:100:ILE:HG13	1.77	0.50
1:A:93:LEU:HD21	1:A:122:LYS:HD2	1.94	0.49
1:E:4:VAL:HB	1:E:48:VAL:HG22	1.94	0.49
1:H:93:LEU:HD21	1:H:122:LYS:HD2	1.93	0.49
1:P:96:ALA:HB2	1:Q:18:ARG:HD3	1.93	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:E:10:PRO:HG3	1:E:81:TYR:CE2	2.48	0.49
1:F:15:LEU:H	1:F:15:LEU:CD2	2.25	0.49
1:I:74:VAL:O	1:I:99:PHE:HA	2.12	0.49
1:J:42:LYS:O	1:J:43:ASN:CB	2.60	0.49
1:H:103:HIS:HB2	1:H:128:CYS:HB2	1.94	0.49
1:M:10:PRO:HD2	1:M:78:ALA:O	2.12	0.49
1:C:106:ASN:ND2	1:C:108:HIS:H	2.10	0.49
1:H:57:GLY:HA3	1:I:55:THR:OG1	2.11	0.49
1:J:57:GLY:HA3	1:K:55:THR:OG1	2.13	0.49
1:U:13:ASN:ND2	1:U:13:ASN:N	2.53	0.49
1:W:8:ASN:O	1:W:52:GLN:HG2	2.12	0.49
1:I:93:LEU:HD21	1:I:122:LYS:HD2	1.94	0.49
1:P:116:GLN:OE1	1:P:116:GLN:CA	2.59	0.49
1:B:8:ASN:O	1:B:52:GLN:HG2	2.11	0.49
1:B:41:LEU:O	1:B:41:LEU:HG	2.12	0.49
1:M:8:ASN:O	1:M:52:GLN:HG2	2.13	0.49
1:O:51:PHE:CG	1:O:62:ARG:HG2	2.48	0.49
1:V:8:ASN:HD22	1:V:12:LEU:HD13	1.77	0.49
1:X:23:TYR:O	1:X:23:TYR:CD2	2.66	0.49
1:0:117:SER:CB	1:0:120:SER:OG	2.61	0.49
1:R:8:ASN:HD22	1:R:12:LEU:HD13	1.78	0.49
1:S:2:LYS:HE2	1:S:44:ASN:HD22	1.78	0.49
1:G:80:ALA:CB	1:I:86:VAL:HG12	2.43	0.49
1:M:0:LEU:H1	1:M:147:LEU:HG	1.75	0.49
1:N:49:LEU:N	1:N:49:LEU:HD23	2.28	0.48
1:P:44:ASN:CG	1:P:44:ASN:O	2.50	0.48
1:V:63:ILE:O	1:V:66:ALA:HB3	2.13	0.48
1:V:106:ASN:HD22	1:V:106:ASN:C	2.16	0.48
1:M:74:VAL:O	1:M:99:PHE:HA	2.13	0.48
1:D:18:ARG:HD3	1:F:96:ALA:HB2	1.94	0.48
1:F:8:ASN:HD22	1:F:12:LEU:HD13	1.78	0.48
1:K:76:ILE:O	1:K:76:ILE:HG23	2.13	0.48
1:M:89:ARG:NH1	1:N:111:GLU:OE2	2.47	0.48
1:W:12:LEU:O	1:W:14:LEU:N	2.46	0.48
1:E:8:ASN:ND2	1:E:135:TYR:OH	2.46	0.48
1:F:62:ARG:NH2	1:F:69:GLN:OE1	2.39	0.48
1:J:106:ASN:C	1:J:106:ASN:ND2	2.67	0.48
1:M:24:GLY:O	1:M:26:THR:N	2.46	0.48
1:W:106:ASN:ND2	1:W:108:HIS:H	2.10	0.48
1:N:146:GLN:NE2	1:N:146:GLN:CA	2.50	0.48
1:T:89:ARG:NH1	1:U:111:GLU:OE2	2.47	0.48

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:H:12:LEU:O	1:H:15:LEU:CD2	2.59	0.48
1:M:15:LEU:CD2	1:M:15:LEU:H	2.27	0.48
1:R:15:LEU:CD2	1:R:15:LEU:H	2.26	0.48
1:F:13:ASN:HD22	1:F:13:ASN:N	2.12	0.48
1:N:8:ASN:ND2	1:N:135:TYR:OH	2.44	0.48
1:S:23:TYR:O	1:S:23:TYR:HD2	1.92	0.48
1:L:67:LYS:HD3	1:L:95:THR:O	2.14	0.48
1:W:58:PHE:N	1:W:58:PHE:CD1	2.81	0.48
1:B:99:PHE:CE2	1:B:123:ALA:HB2	2.48	0.48
1:E:65:GLU:O	1:E:69:GLN:HG3	2.14	0.48
1:V:15:LEU:HD22	1:V:15:LEU:H	1.79	0.48
1:B:8:ASN:ND2	1:B:135:TYR:OH	2.44	0.47
1:C:13:ASN:H	1:C:13:ASN:HD22	1.60	0.47
1:F:15:LEU:CD2	1:F:15:LEU:N	2.77	0.47
1:K:112:PRO:HA	1:K:115:HIS:CD2	2.49	0.47
1:S:8:ASN:ND2	1:S:135:TYR:OH	2.47	0.47
1:T:37:GLU:OE1	1:T:37:GLU:HA	2.14	0.47
1:C:32:GLU:O	1:C:36:ILE:HG13	2.14	0.47
1:J:12:LEU:HD23	1:J:15:LEU:HD13	1.96	0.47
1:C:15:LEU:H	1:C:15:LEU:CD2	2.23	0.47
1:C:106:ASN:C	1:C:106:ASN:HD22	2.18	0.47
1:P:10:PRO:HA	1:P:54:ASN:OD1	2.15	0.47
1:C:28:LEU:O	1:C:32:GLU:HG3	2.15	0.47
1:M:103:HIS:HB2	1:M:128:CYS:CB	2.38	0.47
1:D:10:PRO:O	1:D:11:ASN:HB2	2.14	0.47
1:D:23:TYR:CD2	1:D:23:TYR:C	2.87	0.47
1:J:13:ASN:HD21	1:L:64:HIS:HE1	1.62	0.47
1:J:64:HIS:HE1	1:K:13:ASN:HD21	1.62	0.47
1:J:67:LYS:HG3	1:J:95:THR:HB	1.96	0.47
1:O:106:ASN:C	1:O:106:ASN:HD22	2.17	0.47
1:P:8:ASN:O	1:P:52:GLN:HA	2.14	0.47
1:V:115:HIS:N	1:V:115:HIS:CD2	2.82	0.47
1:D:146:GLN:NE2	1:D:146:GLN:CA	2.77	0.47
1:S:2:LYS:HE2	1:S:44:ASN:ND2	2.30	0.47
1:S:74:VAL:HG23	1:S:97:ILE:HG21	1.96	0.47
1:Q:3:LYS:HG2	1:Q:71:VAL:HA	1.97	0.47
1:T:8:ASN:ND2	1:T:77:ASN:HB3	2.29	0.47
1:J:10:PRO:HA	1:J:54:ASN:OD1	2.15	0.47
1:J:11:ASN:O	1:J:14:LEU:HB2	2.15	0.47
1:K:15:LEU:HA	1:K:16:GLY:HA2	1.78	0.47
1:M:8:ASN:ND2	1:M:135:TYR:OH	2.42	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:M:65:GLU:O	1:M:69:GLN:HG3	2.14	0.47
1:P:32:GLU:HG2	1:P:50:VAL:HG11	1.97	0.47
1:W:15:LEU:O	1:W:27:SER:HA	2.15	0.47
1:N:51:PHE:CG	1:N:62:ARG:HG2	2.50	0.46
1:D:32:GLU:O	1:D:36:ILE:HD12	2.15	0.46
1:S:62:ARG:HG3	1:S:62:ARG:NH1	2.26	0.46
1:X:65:GLU:O	1:X:69:GLN:HG3	2.16	0.46
1:B:23:TYR:O	1:B:23:TYR:CG	2.68	0.46
1:L:24:GLY:O	1:L:26:THR:N	2.44	0.46
1:T:66:ALA:HB1	1:T:71:VAL:HB	1.98	0.46
1:T:74:VAL:HG23	1:T:97:ILE:HG21	1.98	0.46
1:V:35:ALA:HB1	1:V:48:VAL:HG11	1.97	0.46
1:W:57:GLY:HA3	1:X:55:THR:OG1	2.16	0.46
1:I:22:LYS:NZ	4:I:158:HOH:O	2.48	0.46
1:K:13:ASN:H	1:K:13:ASN:ND2	2.13	0.46
1:N:8:ASN:O	1:N:52:GLN:HA	2.16	0.46
1:S:10:PRO:HA	1:S:54:ASN:OD1	2.15	0.46
1:V:58:PHE:CD1	1:V:58:PHE:N	2.83	0.46
1:X:115:HIS:N	1:X:115:HIS:CD2	2.83	0.46
1:A:32:GLU:O	1:A:36:ILE:HG13	2.16	0.46
1:D:23:TYR:O	1:D:23:TYR:CG	2.69	0.46
1:K:93:LEU:HD21	1:K:122:LYS:HD2	1.97	0.46
1:Q:10:PRO:HD2	1:Q:78:ALA:O	2.15	0.46
1:Q:44:ASN:O	1:Q:45:ASP:HB2	2.16	0.46
1:S:15:LEU:HA	1:S:16:GLY:HA2	1.68	0.46
1:I:8:ASN:O	1:I:52:GLN:HA	2.16	0.46
1:U:33:GLN:O	1:U:37:GLU:HG2	2.15	0.46
1:P:8:ASN:O	1:P:52:GLN:HG2	2.16	0.46
1:S:115:HIS:C	1:S:116:GLN:HE21	2.19	0.46
1:B:57:GLY:HA3	1:C:55:THR:OG1	2.16	0.46
1:C:15:LEU:CD2	1:C:15:LEU:N	2.78	0.46
1:C:42:LYS:O	1:C:43:ASN:HB3	2.14	0.46
1:H:26:THR:HG21	1:H:132:VAL:HG11	1.97	0.46
1:J:13:ASN:H	1:J:13:ASN:HD22	1.64	0.46
1:O:8:ASN:O	1:O:52:GLN:HA	2.16	0.46
1:W:83:HIS:HD2	1:W:116:GLN:O	1.99	0.46
1:U:100:ILE:HD11	1:U:141:TYR:CD1	2.51	0.46
1:J:15:LEU:HA	1:J:16:GLY:HA2	1.68	0.45
1:A:106:ASN:C	1:A:106:ASN:HD22	2.19	0.45
1:X:13:ASN:HA	1:X:28:LEU:CD2	2.47	0.45
1:Q:15:LEU:O	1:Q:15:LEU:HD23	2.16	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:R:35:ALA:HB1	1:R:139:ILE:HD13	1.97	0.45
1:S:3:LYS:HB3	1:S:71:VAL:HA	1.98	0.45
1:R:10:PRO:HG3	1:R:81:TYR:CZ	2.51	0.45
1:G:115:HIS:CD2	1:G:115:HIS:N	2.85	0.45
1:S:67:LYS:HB2	1:S:95:THR:HB	1.99	0.45
1:U:89:ARG:NH2	1:U:121:ASP:OD1	2.49	0.45
1:G:103:HIS:HB2	1:G:128:CYS:CB	2.39	0.45
1:P:65:GLU:HG3	1:P:69:GLN:HE22	1.80	0.45
1:W:15:LEU:HA	1:W:16:GLY:HA2	1.55	0.45
1:X:74:VAL:HG23	1:X:97:ILE:HG21	1.98	0.45
1:E:15:LEU:H	1:E:15:LEU:CD2	2.28	0.45
1:K:64:HIS:CE1	1:L:13:ASN:HD21	2.35	0.45
1:P:15:LEU:HA	1:P:16:GLY:HA2	1.45	0.45
1:T:51:PHE:CD1	1:T:62:ARG:HD3	2.51	0.45
1:A:101:GLU:HB3	1:A:126:VAL:HG13	1.98	0.45
1:B:103:HIS:HB2	1:B:128:CYS:HB2	1.99	0.45
1:D:89:ARG:NH2	1:D:121:ASP:OD1	2.49	0.45
1:I:2:LYS:HA	1:I:2:LYS:HD2	1.69	0.45
1:I:109:GLN:HE21	1:I:109:GLN:HB2	1.46	0.45
1:U:8:ASN:O	1:U:52:GLN:HA	2.16	0.45
1:A:114:ARG:NH2	1:C:90:ASP:OD1	2.50	0.45
1:N:3:LYS:HG2	1:N:71:VAL:HA	1.99	0.45
1:Q:33:GLN:O	1:Q:37:GLU:HG2	2.17	0.45
1:T:62:ARG:HG3	1:T:62:ARG:HH11	1.82	0.45
1:T:117:SER:HB3	1:T:120:SER:OG	2.17	0.45
1:X:13:ASN:HA	1:X:28:LEU:HD22	1.97	0.45
1:E:23:TYR:O	1:E:23:TYR:CG	2.70	0.45
1:J:67:LYS:HE3	1:J:95:THR:O	2.17	0.45
1:N:3:LYS:CG	1:N:71:VAL:HA	2.47	0.45
1:A:106:ASN:C	1:A:106:ASN:ND2	2.70	0.44
1:O:31:ILE:HG12	1:O:132:VAL:HG22	1.98	0.44
1:F:10:PRO:HG3	1:F:81:TYR:CE2	2.51	0.44
1:D:58:PHE:N	1:D:58:PHE:CD1	2.83	0.44
1:T:146:GLN:NE2	1:T:146:GLN:CA	2.77	0.44
1:I:13:ASN:ND2	1:I:13:ASN:N	2.57	0.44
1:X:39:ALA:O	1:X:40:LYS:C	2.56	0.44
1:A:115:HIS:CD2	1:A:115:HIS:N	2.84	0.44
1:H:31:ILE:HD13	1:H:135:TYR:CE2	2.53	0.44
1:M:55:THR:OG1	1:O:57:GLY:HA3	2.18	0.44
1:O:15:LEU:HA	1:O:16:GLY:HA2	1.78	0.44
1:P:8:ASN:ND2	1:P:135:TYR:OH	2.44	0.44

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:U:6:LEU:HD12	1:U:75:VAL:O	2.17	0.44	
1:B:65:GLU:HG3	1:B:69:GLN:HE22	1.82	0.44	
1:E:15:LEU:HA	1:E:16:GLY:HA2	1.78	0.44	
1:S:93:LEU:HD21	1:S:122:LYS:HD2	2.00	0.44	
1:W:55:THR:HG22	1:W:58:PHE:H	1.82	0.44	
3:W:156:TRS:N	1:X:56:GLU:OE1	2.44	0.44	
1:C:55:THR:HB	1:C:58:PHE:CD2	2.52	0.44	
1:D:121:ASP:O	1:J:109:GLN:HG3	2.18	0.44	
1:F:92:LEU:HD13	1:F:99:PHE:CD1	2.53	0.44	
1:T:103:HIS:HB2	1:T:128:CYS:CB	2.31	0.44	
1:V:83:HIS:HD2	1:V:116:GLN:O	2.00	0.44	
1:W:103:HIS:HB2	1:W:128:CYS:CB	2.34	0.44	
1:B:15:LEU:HD11	1:B:104:ILE:CD1	2.48	0.44	
1:C:23:TYR:CD2	1:C:23:TYR:O	2.71	0.44	
1:E:8:ASN:ND2	1:E:77:ASN:HB3	2.33	0.44	
1:F:15:LEU:HA	1:F:16:GLY:HA2	1.72	0.44	
1:J:12:LEU:C	1:J:14:LEU:H	2.21	0.44	
1:R:51:PHE:CD1	1:R:62:ARG:HD3	2.53	0.44	
1:X:15:LEU:HA	1:X:16:GLY:HA2	1.74	0.44	
1:F:106:ASN:ND2	1:F:108:HIS:H	2.16	0.44	
1:G:28:LEU:O	1:G:32:GLU:HG3	2.18	0.44	
1:G:60:ILE:HG23	1:G:91:ALA:HB2	2.00	0.44	
1:H:65:GLU:OE1	1:H:65:GLU:CA	2.66	0.44	
1:C:130:LEU:HD12	1:C:130:LEU:HA	1.89	0.43	
1:F:10:PRO:HD2	1:F:78:ALA:O	2.18	0.43	
1:F:60:ILE:HG23	1:F:91:ALA:HB2	2.00	0.43	
1:I:12:LEU:HD22	1:I:15:LEU:HD11	1.99	0.43	
1:S:63:ILE:HD13	1:S:92:LEU:HG	1.99	0.43	
1:W:15:LEU:H	1:W:15:LEU:CD2	2.31	0.43	
1:C:93:LEU:HD11	1:C:122:LYS:HG3	2.00	0.43	
1:L:2:LYS:HD2	1:L:2:LYS:HA	1.50	0.43	
1:M:111:GLU:OE2	1:O:89:ARG:NH1	2.51	0.43	
1:Q:51:PHE:CD1	1:Q:62:ARG:HD3	2.53	0.43	
1:V:8:ASN:ND2	1:V:77:ASN:HB3	2.33	0.43	
1:B:106:ASN:C	1:B:106:ASN:ND2	2.70	0.43	
1:E:32:GLU:HB3	1:E:50:VAL:HG11	2.00	0.43	
1:G:8:ASN:HD22	1:G:12:LEU:HD13	1.82	0.43	
1:W:23:TYR:O	1:W:23:TYR:CD2	2.71	0.43	
1:C:100:ILE:HD11	1:C:141:TYR:CD1	2.53	0.43	
1:E:29:SER:HA	1:E:32:GLU:HG3	1.98	0.43	
1:J:10:PRO:O	1:J:11:ASN:HB2	2.19	0.43	

		Interatomic	Clash
Atom-1	om-1 Atom-2		overlap (Å)
1:K:3:LYS:HG2	1:K:71:VAL:HA	1.99	0.43
1:M:146:GLN:NE2	1:M:146:GLN:CA	2.79	0.43
1:T:8:ASN:O	1:T:52:GLN:HA	2.18	0.43
1:X:15:LEU:CD2	1:X:15:LEU:N	2.80	0.43
1:X:44:ASN:O	1:X:45:ASP:HB2	2.18	0.43
1:A:44:ASN:C	1:A:44:ASN:OD1	2.56	0.43
1:O:89:ARG:HH11	1:O:89:ARG:HD3	1.67	0.43
1:T:106:ASN:C	1:T:106:ASN:HD22	2.21	0.43
1:D:112:PRO:HA	1:D:115:HIS:CD2	2.54	0.43
1:G:43:ASN:O	1:G:43:ASN:CG	2.57	0.43
1:I:113:PHE:CE1	1:I:114:ARG:HG2	2.54	0.43
1:N:106:ASN:O	1:N:109:GLN:HB2	2.17	0.43
1:P:65:GLU:HG3	1:P:69:GLN:NE2	2.34	0.43
1:D:26:THR:HG21	1:D:132:VAL:HG21	2.00	0.43
1:I:81:TYR:HB3	1:I:85:SER:HB2	2.01	0.43
1:O:10:PRO:HD3	1:0:81:TYR:CD2	2.54	0.43
1:Q:86:VAL:HG12	1:R:80:ALA:HB1	2.00	0.43
1:V:132:VAL:HG22	4:V:158:HOH:O	2.18	0.43
1:W:100:ILE:HG23	1:W:125:ALA:O	2.19	0.43
1:B:10:PRO:HA	1:B:54:ASN:OD1	2.19	0.43
1:B:106:ASN:O	1:B:109:GLN:HB2	2.18	0.43
1:H:109:GLN:HG3	1:K:121:ASP:O	2.18	0.43
1:L:15:LEU:HA	1:L:16:GLY:HA2	1.66	0.43
1:W:67:LYS:NZ	1:W:95:THR:O	2.38	0.43
1:R:8:ASN:O	1:R:52:GLN:HA	2.19	0.43
1:L:100:ILE:HD11	1:L:141:TYR:CD1	2.54	0.43
1:N:12:LEU:C	1:N:14:LEU:H	2.21	0.43
1:S:15:LEU:HD22	1:S:15:LEU:H	1.84	0.43
1:W:8:ASN:O	1:W:52:GLN:HA	2.19	0.43
1:G:77:ASN:C	1:G:77:ASN:OD1	2.57	0.42
1:J:111:GLU:OE2	1:L:89:ARG:NH1	2.51	0.42
1:L:121:ASP:OD1	1:L:121:ASP:N	2.51	0.42
1:M:115:HIS:CD2	1:M:115:HIS:N	2.87	0.42
1:0:27:SER:0	1:O:30:ASP:HB2	2.19	0.42
1:E:101:GLU:HB3	1:E:126:VAL:HG13	2.00	0.42
1:K:57:GLY:HA3	1:L:55:THR:OG1	2.19	0.42
1:H:58:PHE:N	1:H:58:PHE:CD1	2.87	0.42
1:I:12:LEU:CD2	1:I:15:LEU:HD11	2.49	0.42
1:K:28:LEU:O	1:K:32:GLU:HG3	2.20	0.42
1:K:108:HIS:HA	1:K:115:HIS:CE1	2.54	0.42
1:T:15:LEU:HA	1:T:16:GLY:HA2	1.72	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:T:75:VAL:HG21	1:T:139:ILE:HD13	2.00	0.42
1:V:15:LEU:HA	1:V:16:GLY:HA2	1.69	0.42
1:V:28:LEU:O	1:V:32:GLU:HG3	2.19	0.42
1:W:74:VAL:HG23	1:W:97:ILE:HG21	2.00	0.42
1:X:15:LEU:HD22	1:X:15:LEU:H	1.83	0.42
1:X:15:LEU:H	1:X:15:LEU:HD23	1.83	0.42
1:B:93:LEU:HD21	1:B:122:LYS:HD2	2.00	0.42
1:F:8:ASN:ND2	1:F:135:TYR:OH	2.48	0.42
1:T:8:ASN:ND2	1:T:135:TYR:OH	2.48	0.42
1:A:66:ALA:HB1	1:A:71:VAL:HG21	2.02	0.42
3:D:156:TRS:H22	1:E:84:THR:HB	2.01	0.42
1:F:15:LEU:HD23	1:F:15:LEU:O	2.20	0.42
1:J:4:VAL:HB	1:J:48:VAL:HG22	2.01	0.42
1:K:75:VAL:HG21	1:K:139:ILE:HG13	2.01	0.42
1:P:64:HIS:CE1	1:Q:13:ASN:HD21	2.38	0.42
1:Q:13:ASN:H	1:Q:13:ASN:ND2	2.15	0.42
1:R:35:ALA:HB1	1:R:139:ILE:CD1	2.49	0.42
1:A:77:ASN:OD1	1:A:77:ASN:C	2.57	0.42
1:G:109:GLN:HE21	1:G:109:GLN:HB2	1.60	0.42
1:I:143:LEU:HD23	1:I:143:LEU:HA	1.80	0.42
1:M:89:ARG:NH2	1:M:121:ASP:OD2	2.53	0.42
1:Q:2:LYS:HD2	1:Q:3:LYS:HB2	2.01	0.42
1:S:111:GLU:HA	1:S:112:PRO:HD2	1.78	0.42
1:S:117:SER:HB3	1:S:120:SER:OG	2.20	0.42
1:X:7:ILE:O	1:X:76:ILE:HA	2.20	0.42
1:C:8:ASN:O	1:C:52:GLN:HG2	2.20	0.42
1:C:8:ASN:O	1:C:52:GLN:HA	2.20	0.42
1:D:91:ALA:HB2	1:E:11:ASN:OD1	2.20	0.42
1:E:8:ASN:HD22	1:E:12:LEU:HD13	1.85	0.42
4:S:156:HOH:O	1:U:93:LEU:HD13	2.19	0.42
1:X:83:HIS:CD2	1:X:114:ARG:HA	2.55	0.42
1:M:40:LYS:HE2	1:M:40:LYS:HB3	1.95	0.42
1:W:106:ASN:C	1:W:106:ASN:HD22	2.23	0.42
1:A:23:TYR:O	1:A:23:TYR:CG	2.72	0.42
1:C:106:ASN:ND2	1:C:106:ASN:C	2.72	0.42
1:F:93:LEU:HD21	1:F:122:LYS:HD2	2.02	0.42
1:T:23:TYR:CD2	1:T:23:TYR:C	2.92	0.42
1:U:39:ALA:HB2	1:U:48:VAL:HG23	2.01	0.42
1:L:15:LEU:CD2	1:L:15:LEU:N	2.81	0.42
1:X:1:VAL:C	1:X:2:LYS:HG2	2.40	0.42
1:B:13:ASN:HA	1:B:28:LEU:HD22	2.02	0.41

		Interatomic	Clash	
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
1:G:107:VAL:HG22	1:G:114:ARG:HB3	2.02	0.41	
1:M:15:LEU:HA	1:M:16:GLY:HA2	1.75	0.41	
1:T:106:ASN:ND2	1:T:106:ASN:C	2.73	0.41	
1:W:8:ASN:ND2	1:W:77:ASN:HB3	2.34	0.41	
1:X:8:ASN:ND2	1:X:135:TYR:OH	2.49	0.41	
1:F:10:PRO:HG3	1:F:81:TYR:CZ	2.55	0.41	
1:W:0:LEU:CD1	1:W:0:LEU:N	2.83	0.41	
1:W:108:HIS:HA	1:W:115:HIS:CD2	2.55	0.41	
1:Q:26:THR:HG21	1:Q:132:VAL:HG21	2.01	0.41	
1:T:8:ASN:O	1:T:52:GLN:HG2	2.20	0.41	
1:R:3:LYS:HB3	1:R:71:VAL:HA	2.01	0.41	
1:W:143:LEU:HA	1:W:143:LEU:HD23	1.85	0.41	
1:B:114:ARG:HD3	4:B:161:HOH:O	2.19	0.41	
1:H:74:VAL:O	1:H:99:PHE:HA	2.20	0.41	
1:J:114:ARG:NH2	1:L:90:ASP:OD1	2.53	0.41	
1:M:92:LEU:HD13	1:M:99:PHE:CD1	2.56	0.41	
1:O:146:GLN:H	1:O:146:GLN:HG2	1.49	0.41	
1:S:11:ASN:O	1:S:14:LEU:HB2	2.20	0.41	
1:T:57:GLY:HA3	1:U:55:THR:OG1	2.20	0.41	
1:U:113:PHE:CE1	1:U:114:ARG:HG2	2.55	0.41	
1:X:32:GLU:O	1:X:36:ILE:HD12	2.20	0.41	
1:B:73:PHE:CE1	1:B:100:ILE:HG13	2.56	0.41	
1:F:13:ASN:N	1:F:13:ASN:ND2	2.69	0.41	
1:Q:106:ASN:O	1:Q:109:GLN:HB2	2.21	0.41	
1:U:1:VAL:HG11	1:U:73:PHE:HB2	2.02	0.41	
1:V:106:ASN:ND2	1:V:106:ASN:C	2.74	0.41	
1:C:0:LEU:HD22	1:C:0:LEU:HA	1.91	0.41	
1:E:10:PRO:O	1:E:11:ASN:HB2	2.21	0.41	
1:L:65:GLU:O	1:L:69:GLN:HB2	2.20	0.41	
1:Q:15:LEU:HA	1:Q:16:GLY:HA2	1.67	0.41	
1:D:8:ASN:ND2	1:D:77:ASN:HB3	2.35	0.41	
1:I:130:LEU:HD12	1:I:130:LEU:HA	1.92	0.41	
1:L:8:ASN:O	1:L:52:GLN:HA	2.21	0.41	
1:L:12:LEU:HD23	1:L:12:LEU:HA	1.94	0.41	
1:M:26:THR:HG21	1:M:132:VAL:HG21	2.02	0.41	
1:N:32:GLU:HG2	1:N:50:VAL:HB	2.03	0.41	
1:U:10:PRO:HA	1:U:54:ASN:OD1	2.21	0.41	
1:U:15:LEU:HA	1:U:16:GLY:HA2	1.64	0.41	
1:V:119:LEU:HA	1:V:119:LEU:HD23	1.76	0.41	
1:H:82:THR:HG21	1:H:101:GLU:OE2	2.21	0.41	
1:I:66:ALA:HA	1:I:69:GLN:HG2	2.02	0.41	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:N:27:SER:O	1:N:30:ASP:HB2	2.20	0.41
1:S:64:HIS:CE1	1:T:54:ASN:HD21	2.39	0.41
1:T:135:TYR:O	1:T:139:ILE:HG12	2.21	0.41
1:W:74:VAL:O	1:W:99:PHE:HA	2.21	0.41
1:W:117:SER:HB3	1:W:120:SER:OG	2.20	0.41
1:X:106:ASN:ND2	1:X:108:HIS:H	2.19	0.41
1:B:10:PRO:HG3	1:B:81:TYR:CZ	2.56	0.40
1:B:51:PHE:CD1	1:B:62:ARG:HD3	2.56	0.40
1:K:106:ASN:C	1:K:106:ASN:ND2	2.74	0.40
1:S:6:LEU:HA	1:S:75:VAL:O	2.21	0.40
1:T:99:PHE:HE2	1:T:119:LEU:HB3	1.86	0.40
1:V:106:ASN:HB3	1:V:109:GLN:NE2	2.36	0.40
1:F:39:ALA:O	1:F:40:LYS:C	2.58	0.40
1:L:10:PRO:HA	1:L:54:ASN:OD1	2.21	0.40
1:O:89:ARG:NH2	1:0:121:ASP:OD1	2.54	0.40
1:P:129:GLY:O	1:V:125:ALA:HB2	2.21	0.40
1:R:45:ASP:N	1:R:45:ASP:OD1	2.54	0.40
1:S:130:LEU:HD12	1:S:130:LEU:HA	1.79	0.40
1:T:89:ARG:NH2	1:T:121:ASP:OD1	2.54	0.40
1:X:3:LYS:HG2	1:X:71:VAL:HG22	2.03	0.40
1:X:74:VAL:O	1:X:99:PHE:HA	2.21	0.40
1:F:6:LEU:HD12	1:F:75:VAL:O	2.21	0.40
1:F:106:ASN:HD22	1:F:106:ASN:C	2.24	0.40
1:H:35:ALA:HB1	1:H:48:VAL:HG11	2.03	0.40
1:O:65:GLU:HA	1:O:68:ARG:NH2	2.36	0.40
1:S:31:ILE:HD13	1:S:135:TYR:CE2	2.56	0.40
1:T:10:PRO:HA	1:T:54:ASN:HA	2.03	0.40
1:X:106:ASN:HB3	1:X:109:GLN:NE2	2.36	0.40
1:A:5:LEU:HB3	1:A:74:VAL:HG22	2.03	0.40
1:A:57:GLY:HA3	1:B:55:THR:OG1	2.21	0.40
1:H:89:ARG:NH1	1:I:111:GLU:OE2	2.55	0.40
1:K:13:ASN:HA	1:K:28:LEU:HD22	2.04	0.40
1:L:4:VAL:HB	1:L:48:VAL:HG22	2.02	0.40
1:P:89:ARG:NH2	1:P:121:ASP:OD1	2.54	0.40
1:R:39:ALA:HB2	1:R:48:VAL:HG23	2.03	0.40
1:S:89:ARG:NH2	1:S:121:ASP:OD1	2.54	0.40
1:I:8:ASN:O	1:I:52:GLN:HG2	2.21	0.40
1:J:119:LEU:HD23	1:J:119:LEU:HA	1.92	0.40
1:V:8:ASN:O	1:V:52:GLN:HA	2.21	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	139/167~(83%)	131 (94%)	6 (4%)	2(1%)	11	39
1	В	139/167~(83%)	131 (94%)	8 (6%)	0	100	100
1	С	139/167~(83%)	132 (95%)	6 (4%)	1 (1%)	22	56
1	D	140/167~(84%)	132 (94%)	7 (5%)	1 (1%)	22	56
1	Е	141/167~(84%)	127 (90%)	13 (9%)	1 (1%)	22	56
1	F	141/167 (84%)	133 (94%)	7 (5%)	1 (1%)	22	56
1	G	139/167~(83%)	132 (95%)	6 (4%)	1 (1%)	22	56
1	Н	140/167~(84%)	133 (95%)	6 (4%)	1 (1%)	22	56
1	Ι	145/167~(87%)	136 (94%)	8 (6%)	1 (1%)	22	56
1	J	139/167~(83%)	127 (91%)	10 (7%)	2 (1%)	11	39
1	Κ	140/167~(84%)	130 (93%)	9 (6%)	1 (1%)	22	56
1	L	140/167~(84%)	128 (91%)	11 (8%)	1 (1%)	22	56
1	М	140/167~(84%)	127 (91%)	10 (7%)	3 (2%)	7	29
1	Ν	140/167~(84%)	131 (94%)	8 (6%)	1 (1%)	22	56
1	О	140/167~(84%)	129 (92%)	11 (8%)	0	100	100
1	Р	140/167~(84%)	131 (94%)	8 (6%)	1 (1%)	22	56
1	Q	140/167~(84%)	126 (90%)	13 (9%)	1 (1%)	22	56
1	R	140/167~(84%)	133 (95%)	7 (5%)	0	100	100
1	S	140/167~(84%)	124 (89%)	13 (9%)	3 (2%)	7	29
1	Т	140/167~(84%)	129 (92%)	7 (5%)	4 (3%)	4	21
1	U	139/167~(83%)	132 (95%)	6 (4%)	1 (1%)	22	56
1	V	139/167~(83%)	121 (87%)	16 (12%)	2 (1%)	11	39
1	W	141/167 (84%)	131 (93%)	8 (6%)	2 (1%)	11	39
1	Х	141/167 (84%)	127 (90%)	13 (9%)	1 (1%)	22	56
All	All	3362/4008~(84%)	3113 (93%)	217 (6%)	32 (1%)	15	48

Mol	Chain	Res	Type
1	С	25	THR
1	G	25	THR
1	Q	25	THR
1	S	146	GLN
1	U	25	THR
1	V	143	LEU
1	W	13	ASN
1	Х	45	ASP
1	D	25	THR
1	Е	25	THR
1	F	25	THR
1	K	25	THR
1	L	41	LEU
1	М	146	GLN
1	N	146	GLN
1	Р	25	THR
1	S	43	ASN
1	Т	25	THR
1	Т	44	ASN
1	Н	25	THR
1	J	13	ASN
1	J	43	ASN
1	М	25	THR
1	S	25	THR
1	V	25	THR
1	А	45	ASP
1	W	41	LEU
1	А	43	ASN
1	Ι	134	GLY
1	Т	41	LEU
1	Т	107	VAL
1	М	13	ASN

All (32) Ramachandran outliers are listed below:

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	118/137~(86%)	107~(91%)	11 (9%)	9	30
1	В	118/137~(86%)	106~(90%)	12 (10%)	7	25
1	С	118/137~(86%)	106 (90%)	12 (10%)	7	25
1	D	119/137~(87%)	109~(92%)	10 (8%)	11	35
1	Ε	120/137~(88%)	110 (92%)	10 (8%)	11	35
1	F	120/137~(88%)	110 (92%)	10 (8%)	11	35
1	G	118/137~(86%)	107~(91%)	11 (9%)	9	30
1	Н	119/137~(87%)	114 (96%)	5 (4%)	30	63
1	Ι	122/137~(89%)	113 (93%)	9~(7%)	13	41
1	J	118/137~(86%)	105 (89%)	13 (11%)	6	22
1	K	119/137~(87%)	105 (88%)	14 (12%)	5	20
1	L	119/137~(87%)	112 (94%)	7 (6%)	19	50
1	М	119/137~(87%)	111 (93%)	8 (7%)	16	45
1	Ν	119/137~(87%)	109 (92%)	10 (8%)	11	35
1	Ο	119/137~(87%)	109 (92%)	10 (8%)	11	35
1	Р	119/137~(87%)	111 (93%)	8 (7%)	16	45
1	Q	119/137~(87%)	108 (91%)	11 (9%)	9	30
1	R	119/137~(87%)	111 (93%)	8 (7%)	16	45
1	S	119/137~(87%)	103 (87%)	16 (13%)	4	15
1	Т	119/137~(87%)	104 (87%)	15 (13%)	4	17
1	U	118/137~(86%)	104 (88%)	14 (12%)	5	20
1	V	118/137~(86%)	107 (91%)	11 (9%)	9	30
1	W	120/137~(88%)	108 (90%)	12 (10%)	7	26
1	Х	120/137~(88%)	102 (85%)	18 (15%)	3	12
All	All	2856/3288~(87%)	2591 (91%)	265 (9%)	9	30

All (265) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	А	0	LEU
1	А	2	LYS
1	А	15	LEU
1	А	17	THR
1	А	23	TYR
1	А	82	THR

Mol	Chain	Res	Type
1	А	89	ARG
1	А	106	ASN
1	А	116	GLN
1	А	128	CYS
1	А	132	VAL
1	В	15	LEU
1	В	25	THR
1	В	29	SER
1	В	33	GLN
1	В	67	LYS
1	В	69	GLN
1	В	89	ARG
1	В	106	ASN
1	В	112	PRO
1	В	116	GLN
1	В	128	CYS
1	В	132	VAL
1	С	0	LEU
1	С	3	LYS
1	С	13	ASN
1	С	14	LEU
1	С	15	LEU
1	С	38	GLN
1	С	40	LYS
1	С	41	LEU
1	С	62	ARG
1	С	67	LYS
1	С	106	ASN
1	C	140	GLU
1	D	0	LEU
1	D	15	LEU
1	D	17	THR
1	D	18	ARG
1	D	40	LYS
1	D	41	LEU
1	D	46	SER
1	D	128	CYS
1	D	132	VAL
1	D	146	GLN
1	Е	15	LEU
1	E	17	THR
1	Ε	23	TYR

Mol	Chain	Res	Type
1	Е	32	GLU
1	Е	37	GLU
1	Е	53	SER
1	Е	89	ARG
1	Е	106	ASN
1	Е	107	VAL
1	Е	128	CYS
1	F	-1	GLN
1	F	13	ASN
1	F	15	LEU
1	F	17	THR
1	F	41	LEU
1	F	43	ASN
1	F	53	SER
1	F	82	THR
1	F	106	ASN
1	F	126	VAL
1	G	3	LYS
1	G	15	LEU
1	G	17	THR
1	G	18	ARG
1	G	29	SER
1	G	36	ILE
1	G	45	ASP
1	G	89	ARG
1	G	112	PRO
1	G	117	SER
1	G	146	GLN
1	Н	0	LEU
1	Н	15	LEU
1	Н	17	THR
1	Н	23	TYR
1	Н	97	ILE
1	Ι	13	ASN
1	Ι	17	THR
1	Ι	18	ARG
1	Ι	21	GLU
1	Ι	53	SER
1	Ι	67	LYS
1	Ι	89	ARG
1	Ι	128	CYS
1	Ι	140	GLU

Mol	Chain	Res	Type
1	J	0	LEU
1	J	3	LYS
1	J	13	ASN
1	J	15	LEU
1	J	17	THR
1	J	42	LYS
1	J	45	ASP
1	J	67	LYS
1	J	71	VAL
1	J	89	ARG
1	J	106	ASN
1	J	107	VAL
1	J	116	GLN
1	K	13	ASN
1	Κ	14	LEU
1	K	15	LEU
1	Κ	17	THR
1	K	29	SER
1	K	53	SER
1	Κ	67	LYS
1	Κ	68	ARG
1	Κ	82	THR
1	Κ	116	GLN
1	Κ	126	VAL
1	Κ	128	CYS
1	K	132	VAL
1	Κ	146	GLN
1	L	3	LYS
1	L	15	LEU
1	L	17	THR
1	L	45	ASP
1	L	53	SER
1	L	89	ARG
1	L	128	CYS
1	М	15	LEU
1	М	17	THR
1	М	23	TYR
1	М	25	THR
1	М	45	ASP
1	М	116	GLN
1	М	126	VAL
1	М	147	LEU

Mol	Chain	Res	Type
1	N	0	LEU
1	N	3	LYS
1	N	15	LEU
1	N	29	SER
1	N	89	ARG
1	N	116	GLN
1	N	128	CYS
1	N	144	ASN
1	N	146	GLN
1	N	147	LEU
1	0	3	LYS
1	0	15	LEU
1	0	17	THR
1	0	28	LEU
1	0	45	ASP
1	0	69	GLN
1	0	106	ASN
1	0	128	CYS
1	0	132	VAL
1	0	147	LEU
1	Р	3	LYS
1	Р	15	LEU
1	Р	17	THR
1	Р	69	GLN
1	Р	89	ARG
1	Р	109	GLN
1	Р	116	GLN
1	Р	147	LEU
1	Q	0	LEU
1	Q	2	LYS
1	Q	3	LYS
1	Q	13	ASN
1	Q	15	LEU
1	Q	18	ARG
1	Q	32	GLU
1	Q	41	LEU
1	Q	106	ASN
1	Q	116	GLN
1	Q	128	CYS
1	R	2	LYS
1	R	3	LYS
1	R	13	ASN

Mol	Chain	Res	Type
1	R	15	LEU
1	R	17	THR
1	R	25	THR
1	R	89	ARG
1	R	116	GLN
1	S	0	LEU
1	S	3	LYS
1	S	15	LEU
1	S	17	THR
1	S	23	TYR
1	S	29	SER
1	S	41	LEU
1	S	45	ASP
1	S	62	ARG
1	S	68	ARG
1	S	89	ARG
1	S	109	GLN
1	S	112	PRO
1	S	116	GLN
1	S	128	CYS
1	S	147	LEU
1	Т	-1	GLN
1	Т	0	LEU
1	Т	15	LEU
1	Т	17	THR
1	Т	18	ARG
1	Т	25	THR
1	Т	29	SER
1	Т	40	LYS
1	Т	68	ARG
1	Т	89	ARG
1	Т	106	ASN
1	Т	109	GLN
1	Т	132	VAL
1	Т	144	ASN
1	Т	146	GLN
1	U	0	LEU
1	U	3	LYS
1	U	13	ASN
1	U	15	LEU
1	U	17	THR
1	U	18	ARG

Mol	Chain	Res	Type
1	U	25	THR
1	U	41	LEU
1	U	69	GLN
1	U	106	ASN
1	U	109	GLN
1	U	112	PRO
1	U	116	GLN
1	U	117	SER
1	V	1	VAL
1	V	3	LYS
1	V	15	LEU
1	V	17	THR
1	V	36	ILE
1	V	45	ASP
1	V	69	GLN
1	V	89	ARG
1	V	106	ASN
1	V	116	GLN
1	V	128	CYS
1	W	-1	GLN
1	W	0	LEU
1	W	1	VAL
1	W	15	LEU
1	W	17	THR
1	W	38	GLN
1	W	41	LEU
1	W	45	ASP
1	W	89	ARG
1	W	106	ASN
1	W	116	GLN
1	W	120	SER
1	X	-1	GLN
1	X	0	LEU
1	X	3	LYS
1	Х	15	LEU
1	Х	17	THR
1	Х	26	THR
1	Х	40	LYS
1	Х	46	SER
1	Х	67	LYS
1	X	89	ARG
1	Х	106	ASN

Continued from previous page...

Mol	Chain	Res	Type
1	Х	109	GLN
1	Х	112	PRO
1	Х	117	SER
1	Х	120	SER
1	Х	128	CYS
1	Х	132	VAL
1	Х	147	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (103) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	8	ASN
1	А	83	HIS
1	А	106	ASN
1	А	109	GLN
1	А	115	HIS
1	А	144	ASN
1	В	8	ASN
1	В	83	HIS
1	В	106	ASN
1	В	109	GLN
1	С	8	ASN
1	С	13	ASN
1	С	106	ASN
1	С	109	GLN
1	С	144	ASN
1	D	8	ASN
1	D	106	ASN
1	D	109	GLN
1	D	115	HIS
1	D	144	ASN
1	D	146	GLN
1	Е	8	ASN
1	E	106	ASN
1	Е	109	GLN
1	F	8	ASN
1	F	13	ASN
1	F	83	HIS
1	F	106	ASN
1	F	109	GLN
1	F	144	ASN
1	G	8	ASN

Mol	Chain	Res	Type
1	G	83	HIS
1	G	109	GLN
1	Н	8	ASN
1	Н	115	HIS
1	Ι	8	ASN
1	Ι	13	ASN
1	Ι	106	ASN
1	Ι	109	GLN
1	Ι	146	GLN
1	J	8	ASN
1	J	13	ASN
1	J	106	ASN
1	J	109	GLN
1	J	115	HIS
1	J	146	GLN
1	K	8	ASN
1	K	13	ASN
1	Κ	106	ASN
1	Κ	109	GLN
1	K	115	HIS
1	Κ	146	GLN
1	L	8	ASN
1	L	109	GLN
1	L	115	HIS
1	М	8	ASN
1	М	109	GLN
1	М	115	HIS
1	М	146	GLN
1	N	8	ASN
1	N	106	ASN
1	N	108	HIS
1	N	146	GLN
1	0	8	ASN
1	0	106	ASN
1	0	109	GLN
1	Р	8	ASN
1	Р	106	ASN
1	Р	109	GLN
1	Р	115	HIS
1	Q	8	ASN
1	Q	13	ASN
1	Q	106	ASN

Mol	Chain	Res	Type
1	R	8	ASN
1	R	13	ASN
1	R	109	GLN
1	S	8	ASN
1	S	83	HIS
1	S	116	GLN
1	Т	8	ASN
1	Т	33	GLN
1	Т	83	HIS
1	Т	106	ASN
1	Т	109	GLN
1	Т	144	ASN
1	Т	146	GLN
1	U	8	ASN
1	U	13	ASN
1	U	83	HIS
1	U	106	ASN
1	V	8	ASN
1	V	83	HIS
1	V	106	ASN
1	V	109	GLN
1	W	8	ASN
1	W	83	HIS
1	W	106	ASN
1	Х	8	ASN
1	Х	83	HIS
1	X	106	ASN
1	Х	108	HIS
1	Х	109	GLN
1	Х	115	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

32 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dog	Link	B	Bond lengths		E	Bond ang	gles
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
3	TRS	D	156	-	7,7,7	0.66	0	$9,\!9,\!9$	1.79	3 (33%)
2	SO4	U	155	-	4,4,4	0.37	0	6,6,6	1.44	1 (16%)
2	SO4	Ι	155	-	4,4,4	0.49	0	6,6,6	1.42	1 (16%)
2	SO4	Е	155	-	4,4,4	0.32	0	$6,\!6,\!6$	0.97	0
3	TRS	Т	156	-	7,7,7	0.55	0	$9,\!9,\!9$	1.08	0
2	SO4	М	155	-	4,4,4	0.59	0	6,6,6	0.95	0
2	SO4	Q	155	-	4,4,4	0.62	0	$6,\!6,\!6$	1.12	1 (16%)
2	SO4	D	155	-	4,4,4	0.56	0	$6,\!6,\!6$	0.71	0
2	SO4	R	155	-	4,4,4	0.28	0	6,6,6	1.19	1 (16%)
2	SO4	G	155	-	4,4,4	0.63	0	$6,\!6,\!6$	1.13	1 (16%)
2	SO4	V	155	-	4,4,4	0.32	0	$6,\!6,\!6$	0.42	0
3	TRS	J	156	-	7,7,7	0.69	0	9,9,9	0.79	0
3	TRS	Р	156	-	7,7,7	0.63	0	$9,\!9,\!9$	1.93	5 (55%)
2	SO4	А	156	-	4,4,4	0.58	0	6,6,6	0.77	0
3	TRS	N	156	-	7,7,7	0.39	0	$9,\!9,\!9$	0.63	0
2	SO4	Ν	155	-	4,4,4	0.27	0	$6,\!6,\!6$	1.02	0
2	SO4	Т	155	-	4,4,4	0.40	0	$6,\!6,\!6$	0.88	0
2	SO4	Н	155	-	4,4,4	0.54	0	$6,\!6,\!6$	0.83	0
2	SO4	Х	155	-	4,4,4	0.50	0	$6,\!6,\!6$	0.79	0
3	TRS	G	156	-	7,7,7	0.81	0	$9,\!9,\!9$	1.44	1 (11%)
2	SO4	0	155	-	4,4,4	0.44	0	$6,\!6,\!6$	0.98	0
2	SO4	W	155	-	4,4,4	0.41	0	$6,\!6,\!6$	0.86	0
2	SO4	P	155	-	4,4,4	0.37	0	6,6,6	0.84	0
2	SO4	А	155	-	4,4,4	0.56	0	$6,\!6,\!6$	1.07	1 (16%)
2	SO4	В	155	-	4,4,4	0.54	0	$\overline{6,\!6,\!6}$	1.41	0

Mal	Turne	Chain	Dec	Tink	B	ond leng	$_{ m gths}$	B	ond ang	gles
WIOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
2	SO4	S	155	-	4,4,4	0.51	0	$6,\!6,\!6$	1.01	0
3	TRS	W	156	-	7,7,7	0.78	0	$9,\!9,\!9$	1.18	1 (11%)
2	SO4	K	155	-	4,4,4	0.26	0	$6,\!6,\!6$	0.60	0
2	SO4	С	155	-	4,4,4	0.48	0	$6,\!6,\!6$	0.84	0
2	SO4	F	155	-	4,4,4	0.53	0	$6,\!6,\!6$	1.54	1 (16%)
3	TRS	А	157	-	7,7,7	0.75	0	$9,\!9,\!9$	1.33	1 (11%)
2	SO4	J	155	-	4,4,4	0.54	0	$6,\!6,\!6$	0.80	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	TRS	D	156	-	-	9/9/9/9	-
3	TRS	J	156	-	-	0/9/9/9	-
3	TRS	G	156	-	-	2/9/9/9	-
3	TRS	W	156	-	-	5/9/9/9	-
3	TRS	Т	156	-	-	2/9/9/9	-
3	TRS	Р	156	-	-	5/9/9/9	-
3	TRS	Ν	156	-	-	3/9/9/9	-
3	TRS	А	157	-	-	2/9/9/9	-

There are no bond length outliers.

All (18) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	Р	156	TRS	C3-C-N	3.18	116.29	108.17
2	F	155	SO4	03-S-01	3.06	125.55	109.56
3	А	157	TRS	01-C1-C	-2.99	102.55	110.88
3	Р	156	TRS	C3-C-C2	-2.83	103.13	110.66
3	D	156	TRS	C2-C-N	2.75	115.20	108.17
3	D	156	TRS	C3-C-N	2.72	115.10	108.17
2	Ι	155	SO4	04-S-01	2.64	123.38	109.56
3	D	156	TRS	C3-C-C2	-2.61	103.70	110.66
2	U	155	SO4	03-S-01	-2.58	96.04	109.56
3	G	156	TRS	C2-C-C1	-2.49	104.02	110.66
3	W	156	TRS	C2-C-N	-2.33	102.23	108.17
3	Р	156	TRS	C2-C-N	2.30	114.05	108.17

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Q	155	SO4	O3-S-O1	2.29	121.55	109.56
2	А	155	SO4	03-S-01	2.21	121.10	109.56
3	Р	156	TRS	O2-C2-C	2.19	116.97	110.88
2	G	155	SO4	04-S-01	2.12	120.63	109.56
3	Р	156	TRS	C3-C-C1	-2.05	105.18	110.66
2	R	155	SO4	O4-S-O3	2.03	119.72	108.54

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
3	D	156	TRS	C1-C-C2-O2
3	D	156	TRS	C3-C-C2-O2
3	D	156	TRS	C1-C-C3-O3
3	N	156	TRS	C3-C-C2-O2
3	N	156	TRS	N-C-C2-O2
3	W	156	TRS	N-C-C3-O3
3	D	156	TRS	C2-C-C1-O1
3	W	156	TRS	C2-C-C1-O1
3	W	156	TRS	C1-C-C3-O3
3	D	156	TRS	C3-C-C1-O1
3	D	156	TRS	C2-C-C3-O3
3	D	156	TRS	N-C-C3-O3
3	N	156	TRS	C1-C-C2-O2
3	Р	156	TRS	N-C-C2-O2
3	W	156	TRS	N-C-C1-O1
3	Р	156	TRS	C1-C-C2-O2
3	Р	156	TRS	C3-C-C2-O2
3	Р	156	TRS	C1-C-C3-O3
3	Т	156	TRS	C2-C-C1-O1
3	А	157	TRS	C1-C-C3-O3
3	D	156	TRS	N-C-C1-O1
3	D	156	TRS	N-C-C2-O2
3	Р	156	TRS	N-C-C3-O3
3	G	156	TRS	C3-C-C2-O2
3	W	156	TRS	C2-C-C3-O3
3	А	157	TRS	N-C-C3-O3
3	G	156	TRS	N-C-C2-O2
3	Т	156	TRS	C1-C-C3-O3

All (28) torsion outliers are listed below:

There are no ring outliers.

3 monomers are involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	D	156	TRS	1	0
3	Ν	156	TRS	1	0
3	W	156	TRS	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$<$ RSRZ $>$	#RSRZ>2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q < 0.9
1	А	143/167~(85%)	-0.02	0 100 100	35, 49, 85, 114	0
1	В	143/167~(85%)	0.05	0 100 100	34, 47, 73, 93	0
1	С	143/167~(85%)	-0.02	1 (0%) 87 76	37, 54, 93, 112	0
1	D	144/167~(86%)	0.17	3 (2%) 63 46	36, 51, 90, 120	0
1	Ε	145/167~(86%)	0.02	0 100 100	33, 46, 85, 113	0
1	F	145/167~(86%)	0.05	0 100 100	34, 45, 75, 105	0
1	G	143/167~(85%)	0.13	4 (2%) 53 36	37, 52, 96, 113	0
1	Η	144/167~(86%)	0.02	1 (0%) 87 76	37, 54, 93, 110	0
1	Ι	147/167~(88%)	-0.03	0 100 100	36, 45, 78, 102	0
1	J	143/167~(85%)	0.62	17 (11%) 4 2	44, 57, 96, 120	0
1	Κ	144/167~(86%)	0.35	10 (6%) 16 10	44, 57, 100, 111	0
1	L	144/167~(86%)	0.18	7 (4%) 29 18	46, 59, 104, 118	0
1	М	144/167~(86%)	-0.02	0 100 100	40, 51, 95, 112	0
1	Ν	144/167~(86%)	0.07	1 (0%) 87 76	39, 49, 81, 96	0
1	Ο	144/167~(86%)	-0.10	0 100 100	40, 54, 95, 106	0
1	Р	144/167~(86%)	0.01	1 (0%) 87 76	39, 53, 97, 113	0
1	Q	144/167~(86%)	0.10	2 (1%) 75 59	37, 50, 92, 112	0
1	R	144/167~(86%)	0.20	2 (1%) 75 59	34, 48, 89, 108	0
1	S	144/167~(86%)	0.34	9 (6%) 20 11	41, 56, 101, 113	0
1	Т	144/167~(86%)	0.44	14 (9%) 7 4	43, 60, 109, 127	0
1	U	143/167~(85%)	0.09	2 (1%) 75 59	41, 53, 93, 119	0
1	V	$143/16\overline{7}\ (85\%)$	0.18	4 (2%) 53 36	48, 60, 102, 124	0
1	W	145/167~(86%)	0.32	8 (5%) 25 15	49, 60, 110, 121	0
1	Х	145/167~(86%)	0.23	7 (4%) 30 19	$47, 59, 108, 1\overline{17}$	0

Mol	Chain	Analysed	$\langle RSRZ \rangle$	# RSRZ > 2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q<0.9
All	All	3456/4008~(86%)	0.14	93 (2%) 54 38	33, 54, 97, 127	0

All (93) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	Т	0	LEU	5.2
1	R	147	LEU	5.0
1	W	0	LEU	4.6
1	Q	25	THR	4.6
1	D	25	THR	4.4
1	W	145	TYR	4.2
1	Κ	6	LEU	4.2
1	Х	25	THR	4.1
1	J	18	ARG	4.1
1	V	0	LEU	4.0
1	W	4	VAL	4.0
1	Н	25	THR	3.9
1	Т	18	ARG	3.8
1	Т	25	THR	3.7
1	Т	-1	GLN	3.6
1	J	143	LEU	3.5
1	Т	1	VAL	3.5
1	S	0	LEU	3.4
1	С	25	THR	3.4
1	J	31	ILE	3.3
1	V	47	GLU	3.3
1	J	25	THR	3.2
1	J	42	LYS	3.1
1	S	4	VAL	3.1
1	J	71	VAL	3.1
1	G	18	ARG	3.0
1	L	25	THR	3.0
1	J	48	VAL	3.0
1	Р	43	ASN	3.0
1	G	36	ILE	2.9
1	Х	45	ASP	2.9
1	W	143	LEU	2.8
1	Т	63	ILE	2.8
1	J	145	TYR	2.8
1	D	138	ALA	2.7
1	J	49	LEU	2.7
1	Т	4	VAL	2.7

Mol	Chain	Res	Type	RSRZ
1	L	1	VAL	2.7
1	Κ	1	VAL	2.7
1	Х	3	LYS	2.7
1	Т	6	LEU	2.6
1	Κ	147	LEU	2.6
1	R	23	TYR	2.6
1	W	6	LEU	2.6
1	L	63	ILE	2.6
1	L	6	LEU	2.6
1	Т	23	TYR	2.6
1	S	46	SER	2.5
1	S	145	TYR	2.5
1	Q	1	VAL	2.5
1	L	147	LEU	2.5
1	J	73	PHE	2.5
1	Κ	143	LEU	2.5
1	S	49	LEU	2.5
1	S	143	LEU	2.5
1	V	73	PHE	2.4
1	Κ	127	ILE	2.4
1	D	1	VAL	2.4
1	Х	48	VAL	2.4
1	J	1	VAL	2.3
1	J	63	ILE	2.3
1	Х	46	SER	2.2
1	U	18	ARG	2.2
1	Т	75	VAL	2.2
1	Ν	25	THR	2.2
1	J	43	ASN	2.2
1	S	147	LEU	2.2
1	K	0	LEU	2.2
1	J	60	ILE	2.2
1	K	76	ILE	2.1
1	T	138	ALA	2.1
1	J	47	GLU	2.1
1	J	0	LEU	2.1
1	Т	68	ARG	2.1
1	K	4	VAL	2.1
1	W	73	PHE	2.1
1	K	49	LEU	2.1
1	K	63	ILE	2.1
1	S	39	ALA	2.1

Mol	Chain	Res	Type	RSRZ
1	W	2	LYS	2.1
1	Т	24	GLY	2.1
1	U	25	THR	2.1
1	G	39	ALA	2.1
1	L	2	LYS	2.1
1	Т	48	VAL	2.1
1	J	24	GLY	2.1
1	G	0	LEU	2.0
1	L	23	TYR	2.0
1	S	8	ASN	2.0
1	Х	47	GLU	2.0
1	W	-1	GLN	2.0
1	Х	18	ARG	2.0
1	V	1	VAL	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
2	SO4	J	155	5/5	0.77	0.26	116,118,119,119	0
2	SO4	Т	155	5/5	0.78	0.22	113,115,116,117	0
2	SO4	А	155	5/5	0.81	0.29	100,102,105,107	0
2	SO4	K	155	5/5	0.82	0.22	116,117,118,118	0
2	SO4	М	155	5/5	0.83	0.25	106,108,111,112	0
2	SO4	Н	155	5/5	0.83	0.21	101,103,105,108	0
2	SO4	Х	155	5/5	0.83	0.19	107,109,111,113	0
2	SO4	S	155	5/5	0.84	0.32	100,102,105,106	0
2	SO4	0	155	5/5	0.84	0.23	111,114,115,116	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
2	SO4	Q	155	5/5	0.84	0.25	94,97,99,101	0
2	SO4	Р	155	5/5	0.85	0.27	106,107,108,110	0
2	SO4	С	155	5/5	0.86	0.23	111,112,114,117	0
2	SO4	W	155	5/5	0.86	0.26	110,113,114,115	0
2	SO4	Е	155	5/5	0.86	0.26	108,110,111,113	0
2	SO4	U	155	5/5	0.89	0.16	101,103,104,105	0
2	SO4	F	155	5/5	0.91	0.24	88,91,96,97	0
2	SO4	G	155	5/5	0.92	0.21	86,90,93,95	0
2	SO4	V	155	5/5	0.92	0.13	110,111,112,112	0
2	SO4	D	155	5/5	0.93	0.19	95,95,97,100	0
2	SO4	R	155	5/5	0.93	0.22	96,98,99,100	0
2	SO4	Ι	155	5/5	0.94	0.26	67,67,71,72	0
2	SO4	N	155	5/5	0.94	0.22	85,88,88,91	0
2	SO4	В	155	5/5	0.95	0.19	84,84,90,91	0
2	SO4	А	156	5/5	0.95	0.28	88,89,91,91	0
3	TRS	J	156	8/8	0.95	0.23	45,49,50,50	0
3	TRS	W	156	8/8	0.95	0.17	$52,\!55,\!56,\!56$	0
3	TRS	G	156	8/8	0.96	0.22	41,43,44,44	0
3	TRS	Т	156	8/8	0.97	0.23	$50,\!52,\!52,\!53$	0
3	TRS	A	157	8/8	0.97	0.15	38,44,45,45	0
3	TRS	Р	156	8/8	0.98	0.20	35,38,38,41	0
3	TRS	D	156	8/8	0.98	0.23	40,40,41,42	0
3	TRS	N	156	8/8	0.98	0.22	35,38,39,39	0

Continued from previous page...

6.5 Other polymers (i)

There are no such residues in this entry.

