[English] 日本語
Yorodumi
- PDB-6r91: Cryo-EM structure of NCP_THF2(-3)-UV-DDB -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 6r91
TitleCryo-EM structure of NCP_THF2(-3)-UV-DDB
Components
  • (DNA damage-binding protein ...) x 2
  • (Human alpha-satellite DNA (145- ...) x 2
  • Histone H2A type 1-B/E
  • Histone H2B type 1-J
  • Histone H3.1Histone H3
  • Histone H4
KeywordsDNA BINDING PROTEIN / DNA damage / Nucleosome / 6-4 photoproduct
Function / homology
Function and homology information


positive regulation by virus of viral protein levels in host cell / epigenetic programming in the zygotic pronuclei / spindle assembly involved in female meiosis / Cul4-RING E3 ubiquitin ligase complex / UV-damage excision repair / biological process involved in interaction with symbiont / regulation of mitotic cell cycle phase transition / WD40-repeat domain binding / Cul4A-RING E3 ubiquitin ligase complex / Cul4B-RING E3 ubiquitin ligase complex ...positive regulation by virus of viral protein levels in host cell / epigenetic programming in the zygotic pronuclei / spindle assembly involved in female meiosis / Cul4-RING E3 ubiquitin ligase complex / UV-damage excision repair / biological process involved in interaction with symbiont / regulation of mitotic cell cycle phase transition / WD40-repeat domain binding / Cul4A-RING E3 ubiquitin ligase complex / Cul4B-RING E3 ubiquitin ligase complex / ubiquitin ligase complex scaffold activity / negative regulation of reproductive process / negative regulation of developmental process / site of DNA damage / cullin family protein binding / viral release from host cell / negative regulation of tumor necrosis factor-mediated signaling pathway / pyrimidine dimer repair / protein autoubiquitination / ectopic germ cell programmed cell death / negative regulation of megakaryocyte differentiation / positive regulation of viral genome replication / protein localization to CENP-A containing chromatin / Chromatin modifying enzymes / Replacement of protamines by nucleosomes in the male pronucleus / CENP-A containing nucleosome / epigenetic regulation of gene expression / Packaging Of Telomere Ends / response to UV / Recognition and association of DNA glycosylase with site containing an affected purine / Cleavage of the damaged purine / Deposition of new CENPA-containing nucleosomes at the centromere / positive regulation of gluconeogenesis / Recognition and association of DNA glycosylase with site containing an affected pyrimidine / Cleavage of the damaged pyrimidine / Inhibition of DNA recombination at telomere / Meiotic synapsis / telomere organization / RNA Polymerase I Promoter Opening / Interleukin-7 signaling / SUMOylation of chromatin organization proteins / Assembly of the ORC complex at the origin of replication / DNA methylation / Condensation of Prophase Chromosomes / HCMV Late Events / Chromatin modifications during the maternal to zygotic transition (MZT) / ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression / SIRT1 negatively regulates rRNA expression / innate immune response in mucosa / PRC2 methylates histones and DNA / Defective pyroptosis / HDACs deacetylate histones / proteasomal protein catabolic process / Recognition of DNA damage by PCNA-containing replication complex / nucleotide-excision repair / RNA Polymerase I Promoter Escape / TP53 Regulates Transcription of DNA Repair Genes / Nonhomologous End-Joining (NHEJ) / lipopolysaccharide binding / Transcriptional regulation by small RNAs / Formation of the beta-catenin:TCF transactivating complex / DNA Damage Recognition in GG-NER / RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function / Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 / G2/M DNA damage checkpoint / NoRC negatively regulates rRNA expression / B-WICH complex positively regulates rRNA expression / Dual Incision in GG-NER / HDMs demethylate histones / regulation of circadian rhythm / DNA Damage/Telomere Stress Induced Senescence / Transcription-Coupled Nucleotide Excision Repair (TC-NER) / Metalloprotease DUBs / Formation of TC-NER Pre-Incision Complex / PKMTs methylate histone lysines / RMTs methylate histone arginines / Wnt signaling pathway / Meiotic recombination / Pre-NOTCH Transcription and Translation / Formation of Incision Complex in GG-NER / nucleosome assembly / protein polyubiquitination / Activation of anterior HOX genes in hindbrain development during early embryogenesis / HCMV Early Events / Dual incision in TC-NER / Gap-filling DNA repair synthesis and ligation in TC-NER / Transcriptional regulation of granulopoiesis / structural constituent of chromatin / positive regulation of protein catabolic process / UCH proteinases / cellular response to UV / rhythmic process / nucleosome / antimicrobial humoral immune response mediated by antimicrobial peptide / protein-macromolecule adaptor activity / E3 ubiquitin ligases ubiquitinate target proteins / site of double-strand break / cell junction / Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at DNA double strand breaks / gene expression
Similarity search - Function
DNA damage-binding protein 2 / Cleavage/polyadenylation specificity factor, A subunit, N-terminal / Mono-functional DNA-alkylating methyl methanesulfonate N-term / Cleavage/polyadenylation specificity factor, A subunit, C-terminal / CPSF A subunit region / Histone H2B signature. / Histone H2B / Histone H2B / Histone H2A conserved site / Histone H2A signature. ...DNA damage-binding protein 2 / Cleavage/polyadenylation specificity factor, A subunit, N-terminal / Mono-functional DNA-alkylating methyl methanesulfonate N-term / Cleavage/polyadenylation specificity factor, A subunit, C-terminal / CPSF A subunit region / Histone H2B signature. / Histone H2B / Histone H2B / Histone H2A conserved site / Histone H2A signature. / Histone H2A, C-terminal domain / C-terminus of histone H2A / Histone H2A / Histone 2A / Histone H4, conserved site / Histone H4 signature. / Histone H4 / Histone H4 / CENP-T/Histone H4, histone fold / Centromere kinetochore component CENP-T histone fold / TATA box binding protein associated factor / TATA box binding protein associated factor (TAF), histone-like fold domain / Histone H3 signature 1. / Histone H3 signature 2. / Histone H3 / Histone H3/CENP-A / Histone H2A/H2B/H3 / Core histone H2A/H2B/H3/H4 / Histone-fold / WD40 repeat, conserved site / Trp-Asp (WD) repeats signature. / WD domain, G-beta repeat / WD40 repeats / WD40 repeat / Trp-Asp (WD) repeats profile. / Trp-Asp (WD) repeats circular profile. / WD40-repeat-containing domain superfamily / WD40/YVTN repeat-like-containing domain superfamily
Similarity search - Domain/homology
DNA / DNA (> 10) / DNA (> 100) / Histone H2A type 1-B/E / Histone H2B type 1-J / Histone H4 / Histone H3.1 / DNA damage-binding protein 1 / DNA damage-binding protein 2
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 4.1 Å
AuthorsMatsumoto, S. / Cavadini, S. / Bunker, R.D. / Thoma, N.H.
Funding support Switzerland, Japan, 7items
OrganizationGrant numberCountry
Swiss National Science FoundationCRSII3_160734/1 Switzerland
European Union666068
European Commission667951
European Commission705354
Japan Society for the Promotion of ScienceJP18H05534 Japan
Japan Society for the Promotion of ScienceJP16H06307 Japan
Japan Agency for Medical Research and Development (AMED)JP18am0101076 Japan
CitationJournal: Nature / Year: 2019
Title: DNA damage detection in nucleosomes involves DNA register shifting.
Authors: Syota Matsumoto / Simone Cavadini / Richard D Bunker / Ralph S Grand / Alessandro Potenza / Julius Rabl / Junpei Yamamoto / Andreas D Schenk / Dirk Schübeler / Shigenori Iwai / Kaoru ...Authors: Syota Matsumoto / Simone Cavadini / Richard D Bunker / Ralph S Grand / Alessandro Potenza / Julius Rabl / Junpei Yamamoto / Andreas D Schenk / Dirk Schübeler / Shigenori Iwai / Kaoru Sugasawa / Hitoshi Kurumizaka / Nicolas H Thomä /
Abstract: Access to DNA packaged in nucleosomes is critical for gene regulation, DNA replication and DNA repair. In humans, the UV-damaged DNA-binding protein (UV-DDB) complex detects UV-light-induced ...Access to DNA packaged in nucleosomes is critical for gene regulation, DNA replication and DNA repair. In humans, the UV-damaged DNA-binding protein (UV-DDB) complex detects UV-light-induced pyrimidine dimers throughout the genome; however, it remains unknown how these lesions are recognized in chromatin, in which nucleosomes restrict access to DNA. Here we report cryo-electron microscopy structures of UV-DDB bound to nucleosomes bearing a 6-4 pyrimidine-pyrimidone dimer or a DNA-damage mimic in various positions. We find that UV-DDB binds UV-damaged nucleosomes at lesions located in the solvent-facing minor groove without affecting the overall nucleosome architecture. In the case of buried lesions that face the histone core, UV-DDB changes the predominant translational register of the nucleosome and selectively binds the lesion in an accessible, exposed position. Our findings explain how UV-DDB detects occluded lesions in strongly positioned nucleosomes, and identify slide-assisted site exposure as a mechanism by which high-affinity DNA-binding proteins can access otherwise occluded sites in nucleosomal DNA.
History
DepositionApr 2, 2019Deposition site: PDBE / Processing site: PDBE
Revision 1.0Jun 12, 2019Provider: repository / Type: Initial release
Revision 1.1Jul 17, 2019Group: Author supporting evidence / Data collection / Database references
Category: citation / em_image_scans / em_single_particle_entity
Item: _citation.journal_volume / _citation.page_first / _citation.page_last
Revision 1.2Nov 6, 2019Group: Data collection / Refinement description / Category: em_3d_fitting / Item: _em_3d_fitting.target_criteria
Revision 1.3Dec 18, 2019Group: Other / Category: atom_sites / cell
Item: _atom_sites.fract_transf_matrix[1][1] / _atom_sites.fract_transf_matrix[2][2] ..._atom_sites.fract_transf_matrix[1][1] / _atom_sites.fract_transf_matrix[2][2] / _atom_sites.fract_transf_matrix[3][3] / _cell.Z_PDB

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-4765
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Histone H3.1
B: Histone H4
C: Histone H2A type 1-B/E
D: Histone H2B type 1-J
E: Histone H3.1
F: Histone H4
G: Histone H2A type 1-B/E
H: Histone H2B type 1-J
I: Human alpha-satellite DNA (145-MER)
J: Human alpha-satellite DNA (145-MER) with abasic sites at positions 97-98
K: DNA damage-binding protein 1
L: DNA damage-binding protein 2


Theoretical massNumber of molelcules
Total (without water)381,70012
Polymers381,70012
Non-polymers00
Water0
1


  • Idetical with deposited unit
  • defined by author&software
  • Evidence: microscopy
TypeNameSymmetry operationNumber
identity operation1_5551
Buried area66360 Å2
ΔGint-413 kcal/mol
Surface area121700 Å2
MethodPISA

-
Components

-
Protein , 4 types, 8 molecules AEBFCGDH

#1: Protein Histone H3.1 / Histone H3 / Histone H3/a / Histone H3/b / Histone H3/c / Histone H3/d / Histone H3/f / Histone H3/h / Histone ...Histone H3/a / Histone H3/b / Histone H3/c / Histone H3/d / Histone H3/f / Histone H3/h / Histone H3/i / Histone H3/j / Histone H3/k / Histone H3/l


Mass: 15719.445 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human)
Gene: HIST1H3A, H3FA, HIST1H3B, H3FL, HIST1H3C, H3FC, HIST1H3D, H3FB, HIST1H3E, H3FD, HIST1H3F, H3FI, HIST1H3G, H3FH, HIST1H3H, H3FK, HIST1H3I, H3FF, HIST1H3J, H3FJ
Production host: Escherichia coli BL21(DE3) (bacteria) / References: UniProt: P68431
#2: Protein Histone H4 /


Mass: 11676.703 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human)
Gene: HIST1H4A, H4/A, H4FA, HIST1H4B, H4/I, H4FI, HIST1H4C, H4/G, H4FG, HIST1H4D, H4/B, H4FB, HIST1H4E, H4/J, H4FJ, HIST1H4F, H4/C, H4FC, HIST1H4H, H4/H, H4FH, HIST1H4I, H4/M, H4FM, HIST1H4J, H4/E, ...Gene: HIST1H4A, H4/A, H4FA, HIST1H4B, H4/I, H4FI, HIST1H4C, H4/G, H4FG, HIST1H4D, H4/B, H4FB, HIST1H4E, H4/J, H4FJ, HIST1H4F, H4/C, H4FC, HIST1H4H, H4/H, H4FH, HIST1H4I, H4/M, H4FM, HIST1H4J, H4/E, H4FE, HIST1H4K, H4/D, H4FD, HIST1H4L, H4/K, H4FK, HIST2H4A, H4/N, H4F2, H4FN, HIST2H4, HIST2H4B, H4/O, H4FO, HIST4H4
Cell line (production host): JM109(DE3) / Production host: Escherichia coli (E. coli) / References: UniProt: P62805
#3: Protein Histone H2A type 1-B/E / Histone H2A.2 / Histone H2A/a / Histone H2A/m


Mass: 14447.825 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: HIST1H2AB, H2AFM, HIST1H2AE, H2AFA / Production host: Escherichia coli BL21(DE3) (bacteria) / References: UniProt: P04908
#4: Protein Histone H2B type 1-J / Histone H2B.1 / Histone H2B.r / H2B/r


Mass: 14217.516 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: HIST1H2BJ, H2BFR / Production host: Escherichia coli BL21(DE3) (bacteria) / References: UniProt: P06899

-
Human alpha-satellite DNA (145- ... , 2 types, 2 molecules IJ

#5: DNA chain Human alpha-satellite DNA (145-MER)


Mass: 44756.648 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) Homo sapiens (human)
#6: DNA chain Human alpha-satellite DNA (145-MER) with abasic sites at positions 97-98


Mass: 44452.434 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) Homo sapiens (human)

-
DNA damage-binding protein ... , 2 types, 2 molecules KL

#7: Protein DNA damage-binding protein 1 / DDB p127 subunit / DNA damage-binding protein a / DDBa / Damage-specific DNA-binding protein 1 / ...DDB p127 subunit / DNA damage-binding protein a / DDBa / Damage-specific DNA-binding protein 1 / HBV X-associated protein 1 / XAP-1 / UV-damaged DNA-binding factor / UV-damaged DNA-binding protein 1 / UV-DDB 1 / XPE-binding factor / XPE-BF / Xeroderma pigmentosum group E-complementing protein / XPCe


Mass: 129766.305 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: DDB1, XAP1 / Cell line (production host): High five / Production host: Trichoplusia ni (cabbage looper) / References: UniProt: Q16531
#8: Protein DNA damage-binding protein 2 / DDB p48 subunit / DDBb / Damage-specific DNA-binding protein 2 / UV-damaged DNA-binding protein 2 / UV-DDB 2


Mass: 50601.844 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: DDB2 / Cell line (production host): High five / Production host: Trichoplusia ni (cabbage looper) / References: UniProt: Q92466

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

Component
IDNameTypeEntity IDParent-IDSource
1UV-DDB bound to a THF2 (-3) containing nucleosomeCOMPLEXall0MULTIPLE SOURCES
2Histone H3.1, Histone H2A, Histone H2BHistone H3COMPLEX#1, #3-#41RECOMBINANT
3Histone H4COMPLEX#21RECOMBINANT
4DNACOMPLEX#5-#61RECOMBINANT
5DNA damage-binding protein 1(2), DNA damage-binding protein 2COMPLEX#7-#81RECOMBINANT
Source (natural)
IDEntity assembly-IDOrganismNcbi tax-ID
22Homo sapiens (human)9606
33Homo sapiens (human)9606
44Homo sapiens (human)9606
55Homo sapiens (human)9606
Source (recombinant)
IDEntity assembly-IDOrganismNcbi tax-ID
22Escherichia coli BL21(DE3) (bacteria)469008
33Escherichia coli (E. coli)562
44synthetic construct (others)32630
55Trichoplusia ni (cabbage looper)7111
Buffer solutionpH: 7.4
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE / Humidity: 85 % / Chamber temperature: 277 K

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: SPOT SCAN
Electron lensMode: BRIGHT FIELDBright-field microscopy
Image recordingElectron dose: 40 e/Å2 / Film or detector model: GATAN K2 SUMMIT (4k x 4k)

-
Processing

EM software
IDNameVersionCategoryDetails
7Coot0.8.9.1model fitting
9REFMAC5.8.0238model refinementDNA only
10PHENIXdev-3318model refinement
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 4.1 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 119309 / Symmetry type: POINT
Atomic model buildingProtocol: FLEXIBLE FIT / Space: REAL / Target criteria: Cross-correlation coefficient
Atomic model building
IDPDB-IDPdb chain-ID 3D fitting-ID
14ZUXI1
24ZUXJ1
35Y0CA1
45Y0CB1
55Y0CC1
65Y0CD1
75Y0CE1
85Y0CF1
95Y0CG1
105Y0CH1
114.0E+54B1
123EI4A1

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more