[English] 日本語
EMN Papers
- Database of articles cited by 3DEM data entries -

+
Search query

Keywords
Author
Journal
IF

-
Structure paper

TitleMechanisms for Zinc and Proton Inhibition of the GluN1/GluN2A NMDA Receptor.
Journal, issue, pagesCell, Vol. 175, Issue 6, Page 1520-1532.e15, Year 2018
Publish dateNov 29, 2018
AuthorsFarzad Jalali-Yazdi / Sandipan Chowdhury / Craig Yoshioka / Eric Gouaux /
PubMed AbstractN-methyl-D-aspartate receptors (NMDARs) play essential roles in memory formation, neuronal plasticity, and brain development, with their dysfunction linked to a range of disorders from ischemia to ...N-methyl-D-aspartate receptors (NMDARs) play essential roles in memory formation, neuronal plasticity, and brain development, with their dysfunction linked to a range of disorders from ischemia to schizophrenia. Zinc and pH are physiological allosteric modulators of NMDARs, with GluN2A-containing receptors inhibited by nanomolar concentrations of divalent zinc and by excursions to low pH. Despite the widespread importance of zinc and proton modulation of NMDARs, the molecular mechanism by which these ions modulate receptor activity has proven elusive. Here, we use cryoelectron microscopy to elucidate the structure of the GluN1/GluN2A NMDAR in a large ensemble of conformations under a range of physiologically relevant zinc and proton concentrations. We show how zinc binding to the amino terminal domain elicits structural changes that are transduced though the ligand-binding domain and result in constriction of the ion channel gate.
External linksCell / PubMed:30500536 / PubMed Central
MethodsEM (single particle)
Resolution4.71 - 16.5 Å
Structure data

EMDB-9147, PDB-6mm9:
Diheteromeric NMDA receptor GluN1/GluN2A in the '1-Knuckle' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 6.1
Method: EM (single particle) / Resolution: 5.97 Å

EMDB-9148, PDB-6mma:
Diheteromeric NMDA receptor GluN1/GluN2A in the 'Extended' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 6.1
Method: EM (single particle) / Resolution: 6.31 Å

EMDB-9149, PDB-6mmb:
Diheteromeric NMDA receptor GluN1/GluN2A in the 'Super-Splayed' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 6.1
Method: EM (single particle) / Resolution: 12.7 Å

EMDB-9150, PDB-6mmg:
Diheteromeric NMDA receptor GluN1/GluN2A in the '2-Knuckle-Symmetric' conformation, in complex with glycine and glutamate, in the presence of 1 millimolar EDTA, and at pH 7.4
Method: EM (single particle) / Resolution: 6.23 Å

EMDB-9151, PDB-6mmh:
Diheteromeric NMDA receptor GluN1/GluN2A in the 'Extended-2' conformation, in complex with glycine and glutamate, in the presence of 1 millimolar zinc chloride, and at pH 7.4
Method: EM (single particle) / Resolution: 8.21 Å

EMDB-9152, PDB-6mmi:
Diheteromeric NMDA receptor GluN1/GluN2A in the 'Splayed-Open' conformation, in complex with glycine and glutamate, in the presence of 1 millimolar zinc chloride, and at pH 7.4
Method: EM (single particle) / Resolution: 8.93 Å

EMDB-9153, PDB-6mmj:
Diheteromeric NMDA receptor GluN1/GluN2A in the 'Super-Splayed' conformation, in complex with glycine and glutamate, in the presence of 1 millimolar zinc chloride, and at pH 7.4
Method: EM (single particle) / Resolution: 16.5 Å

EMDB-9154, PDB-6mmk:
Diheteromeric NMDA receptor GluN1/GluN2A in the '1-Knuckle' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 7.4
Method: EM (single particle) / Resolution: 6.08 Å

EMDB-9155, PDB-6mml:
Diheteromeric NMDA receptor GluN1/GluN2A in the '2-Knuckle-Asymmetric' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 7.4
Method: EM (single particle) / Resolution: 7.14 Å

EMDB-9156, PDB-6mmm:
Diheteromeric NMDA receptor GluN1/GluN2A in the 'Extended-1' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 7.4
Method: EM (single particle) / Resolution: 6.84 Å

EMDB-9157, PDB-6mmn:
Diheteromeric NMDA receptor GluN1/GluN2A in the '2-Knuckle-Symmetric' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 8.0
Method: EM (single particle) / Resolution: 7.51 Å

EMDB-9158, PDB-6mmp:
Diheteromeric NMDA receptor GluN1/GluN2A in the '2-Knuckle-Symmetric' conformation, in complex with glycine and glutamate, in the presence of 0.1 millimolar EDTA, and at pH 8.0
Method: EM (single particle) / Resolution: 6.88 Å

EMDB-9159, PDB-6mmr:
Diheteromeric NMDA receptor GluN1/GluN2A in the '2-Knuckle-Symmetric' conformation, in complex with glycine and glutamate, in the presence of 1 millimolar zinc chloride, 3 millimolar EDTA, and at pH 7.4
Method: EM (single particle) / Resolution: 5.13 Å

EMDB-9160, PDB-6mms:
Triheteromeric NMDA receptor GluN1/GluN2A/GluN2A* in the '2-Knuckle-Symmetric' conformation, in complex with glycine and glutamate, in the presence of 1 millimolar EDTA, and at pH 7.4
Method: EM (single particle) / Resolution: 5.38 Å

EMDB-9161, PDB-6mmt:
Triheteromeric NMDA receptor GluN1/GluN2A/GluN2A* in the '1-Knuckle' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 7.4
Method: EM (single particle) / Resolution: 7.46 Å

EMDB-9162, PDB-6mmu:
Triheteromeric NMDA receptor GluN1/GluN2A/GluN2A* in the '2-Knuckle-Asymmetric' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 7.4
Method: EM (single particle) / Resolution: 5.3 Å

EMDB-9163, PDB-6mmv:
Triheteromeric NMDA receptor GluN1/GluN2A/GluN2A* Extracellular Domain in the '2-Knuckle-Asymmetric' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 7.4
Method: EM (single particle) / Resolution: 4.71 Å

EMDB-9164, PDB-6mmw:
Triheteromeric NMDA receptor GluN1/GluN2A/GluN2A* in the '2-Knuckle-Symmetric' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 7.4
Method: EM (single particle) / Resolution: 6.2 Å

EMDB-9165, PDB-6mmx:
Triheteromeric NMDA receptor GluN1/GluN2A/GluN2A* in the 'Extended' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 7.4
Method: EM (single particle) / Resolution: 6.99 Å

Chemicals

ChemComp-NAG:
2-acetamido-2-deoxy-beta-D-glucopyranose / N-Acetylglucosamine

Source
  • rattus norvegicus (Norway rat)
KeywordsTRANSPORT PROTEIN / Ligand-gated Ion Channel / NMDA Receptor / ionotropic Glutamate Receptors / membrane protein

+
About EMN Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Oct 5, 2021. Nobel Prize for mechanically activated and temperature-gated ion channels

Nobel Prize for mechanically activated and temperature-gated ion channels

  • The Nobel Prize in Physiology or Medicine 2021 was awarded jointly to David Julius and Ardem Patapoutian "for their discoveries of receptors for temperature and touch."
  • EM Navigator can help to find cryo-EM structure data by both pioneers.

External links:The Nobel Prize in Physiology or Medicine 2021 - NobelPrize.org / Structure data by Ardem Patapoutian / Structure data by David Julius

+
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jul 5, 2019. Downlodablable text data

Downlodablable text data

Some data of EM Navigator services can be downloaded as text file. Software such as Excel can load the data files.

PageDataFormat
EMN Searchsearch resultCSV, TSV, or JSON
EMN statisticsdata tableCSV or TSV

Related info.:EMN Search / EMN Statistics

-
EMN Papers

Database of articles cited by 3DEM data entries

  • Database of articles cited by 3DEM data entries in EMDB and PDB
  • Using PubMed data

Related info.:EMDB / PDB / Q: What are the data sources of EM Navigator? / EM Navigator / Yorodumi Papers / Changes in new EM Navigator and Yorodumi

Read more