# Application of Structural Alignment in Immunology

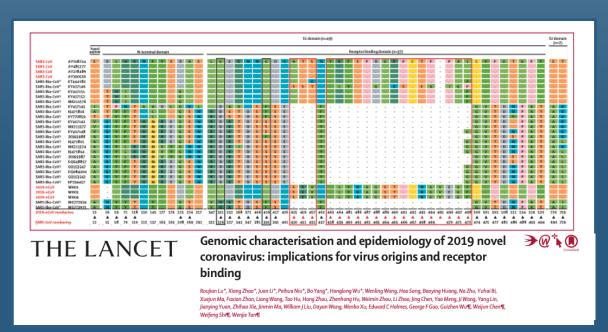
#### Daron Standley & John Rozewicki Research Institute for Microbial Diseases Department of Genome Informatics Osaka University

## **Sequence and Structure**

#### PDB/mmCIF

| ATOM | 65 | N  | GLY A | 31 | -51.397 ·  | -9.757 | 12.360 | 1.00 22.01 |
|------|----|----|-------|----|------------|--------|--------|------------|
| ATOM | 66 | CA | GLY A | 31 | -51.023    | -9.667 | 13.758 | 1.00 24.83 |
| ATOM | 67 | C  | GLY A | 31 | -51.645 -3 | 10.743 | 14.620 | 1.00 23.60 |
| ATOM | 68 | 0  | GLY A | 31 | -50.969 -: | 11.318 | 15.465 | 1.00 29.16 |
| ATOM | 69 | N  | SER A | 32 | -52.926 -3 | 11.040 | 14.407 | 1.00 20.88 |
| ATOM | 70 | CA | SER A | 32 | -53.596 -: | 12.031 | 15.253 | 1.00 20.22 |
| ATOM | 71 | C  | SER A | 32 | -52.979 -: | 13.389 | 15.010 | 1.00 24.23 |
| ATOM | 72 | 0  | SER A | 32 | -52.770 -3 | 14.157 | 15.953 | 1.00 23.99 |
| ATOM | 73 | СВ | SER A | 32 | -55.098 -3 | 12.110 | 14.975 | 1.00 20.43 |
| ATOM | 74 | OG | SER A | 32 | -55.727 -: | 10.876 | 15.253 | 1.00 31.32 |

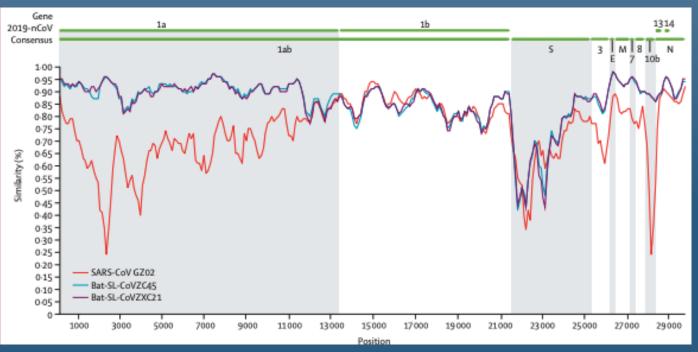
#### **FASTA**


>3V33\_A

GGGTPKAPNLEPPLPEEEKEGSDLRPVVIDGSNVAMSHGNKEVFSCRGILLAVNWFL ERGHTDITVFVPSWRKEQPRPDVPITDQHILRELEKKKILVFTPSRRVGGKRVVCYD DRFIVKLAYESDGIVVSNDTYRDLQGERQEWKRFIEERLLMYSFVNDKFMPPDDPLG RHGPSLDNFLRKKPLTLEHRKQPCPYGRKCTYGIKCRFFHPERPSCPQRSVA

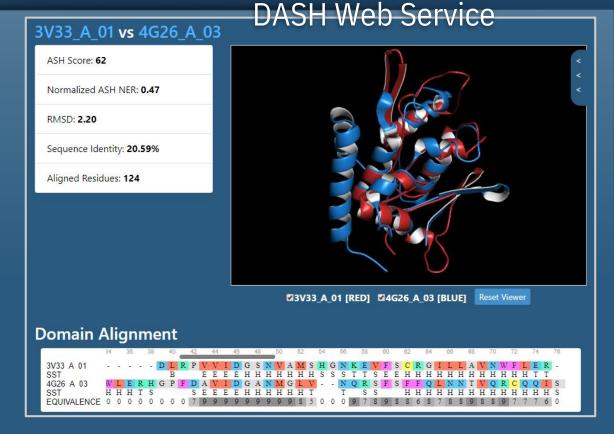
Example: Regnase-1

#### **Multiple Sequence Alignment (MSA)**


#### Sequences were aligned using MAFFT



The Novel Coronavirus Epidemic in China: How to Help Researchers Using Sequence Alignment on 2019-nCoV with MAFFT by Shen Huang 2020-01-27


#### **Importance of MSAs**

Sequence identity between the consensus of 2019-nCoV and representative betacoronavirus genomes



# Structural Alignment

- 3D structures can also be aligned in 3D space
- Corresponding residues can be scored/calculated

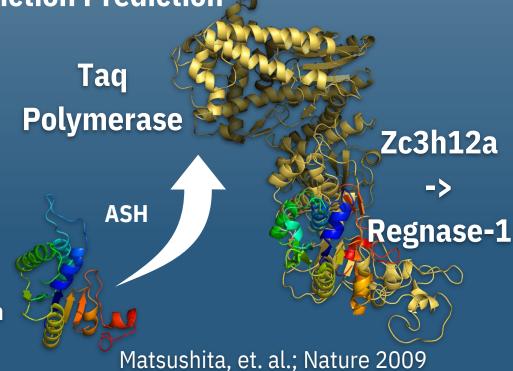


## DASH:

Database of Aligned Structural Homologs

Rozewicki, et. al.
Nucleic Acids Research
2019

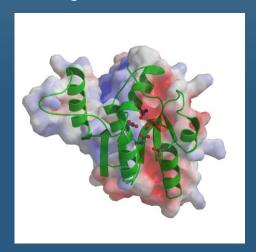
- ◆ ASH structure alignment database
- ◆ Tracking:
  - → ~60 million chain alignments
  - ◆ ~100 million domain alignments
- Integrated with MAFFT through public REST interface
- ◆ Conceived in 2003 at IPR
- ◆ Development started in 2008
- ◆ Released to public in 2019


# Why structural alignments?

**Most common use: Protein Function Prediction** 

#### **Zc3h12a: Unknown Function**

MSGPCGEKPVLEASPTMSLWEFEDSHSROGTPRPGOELAAEEASALELOMKVDFFRKLGY SSTEIHSVLOKLGVOADTNTVLGELVKHGTATEREROTSPDPCPOLPLVPRGGGTPKAPN LEPPLPEEEKEGSDLRPVVIDGSNVAMSHGNKEVFSCRGILLAVNWFLERGHTDITVFVP SWRKEOPRPDVPITDOHILRELEKKKILVFTPSRRVGGKRVVCYDDRFIVKLAYESDGIV VSNDTYRDLQGERQEWKRFIEERLLMYSFVNDKFMPPDDPLGRHGPSLDNFLRKKPLTLE HRKOPCPYGRKCTYGIKCRFFHPERPSCPORSVADELRANALLSPPRAPSKDKNGRRPSP SSOSSSLLTESEOCSLDGKKLGAOASPGSRQEGLTQTYAPSGRSLAPSGGSGSSFGPTDW LPQTLDSLPYVSQDCLDSGIGSLESQMSELWGVRGGGPGEPGPPRAPYTGYSPYGSELPA TAAFSAFGRAMGAGHFSVPADYPPAPPAFPPREYWSEPYPLPPPTSVLOEPPVOSPGAGR SPWGRAGSLAKEQASVYTKLCGVFPPHLVEAVMGRFPQLLDPQQLAAEILSYKSQHPSE


> Zc3h12a Model **Template (2QIP) 2QIP Function Unknown Protein 3000 Target**



Other refs

# Why multiple alignments?

MAFFT and
MAFFT-DASH
MSAs of Regnase,
Taq polymerase
and 2QIP



```
Q5D1E8/112-297 GGGTPKAPNLEPPLPEEEKEGSDLRPVVIDGSNVAMS--HGNKEVFSCRG-ILLAVNWFL
              Q79YT8/ 1-156 MQSD------HKEK---IAILVDVQNVYYTCREAY-----RSNFDYNQFWYV
              P19821/ 1-144 MRGM------LPLFEPKG---RVLLVDGHHLAYRTFHALKGLTTSRGEPVOAVYGFA
              O5D1E8/112-297 -----ERGHTDITVF---VPSWRKE-----OPRPDVPITDOHILRELEKKKIL
              Q79YT8/ 1-156 ATQEKEVVSAKAYAIASNDPKQRQFHH------ILRGVGFEVML
   MAFFT
              P19821/ 1-144 KSLLKALKEDGDAVIVVFDAKAPSFRHEAYGGYKAGRAPTPEDFPRQLALIKEL-----
 Alignment
              O5D1E8/112-297 VFTPSRRVGGKR-----VVCYDDRFIVKLA-----YESDGIVVS-----NDTYL
              Q5D1E8/112-297 RKKPL
                                    Conserved Aspartic Acid
              079YT8/ 1-156 SGDGD
              P19821/ 1-144 TADKD
              Q5D1E8/112-297 GGGTPKAPNLEPPLPEEEKEGSDLR-PVVIDGSNVAMSHGNK-----EVFSCRGI
              Q79YT8/ 1-156 -----SNFDY
              P19821/ 1-144 MRGM------LPLFEPKG---R-VLLVDGHHLAYRTFHALKGLTTSRGEPVOAVYGF
MAFFT-DASH
              Q5D1E8/112-297 LLAVNWFLERGHTDITVFVP---SWRKE-----QPRP-DVPITDQHILRELEKKK
              Q79YT8/ 1-156 NOFWYVATQEKEVVSAKAYA---IASND------PKQ------RQFHHILRGVG
 Alignment
              P19821/ 1-144 AKSLLKALKEDGDAVIVVFDAK PSFRHEAYGGYKAGRAPTPEDFPROLALIKELVDLLG
              O5D1E8/112-297 ILVFTPS---RRVGGKRVVCYDDRFIVKLAYE----SD-----GIVVSNDTYLRKKPL
```

Q79YT8/ 1-156 FEVMLKPYIQRRDGSAK--GDWDVGITLDAIE----IAPDVDRVILVSGDGD-----P19821/ 1-144 LARLEVP--------GYEADDVLASLAKKAEKEGYE-----VRILTADKD-----

# PDB & PDBj in 2003

- Only 24,000 entries in the PDB
- Structural Genomics was starting to take off
- National goal for Japanese labs to solve 3000 protein structures in 3 years
- Good structural alignment tools were becoming more and more necessary

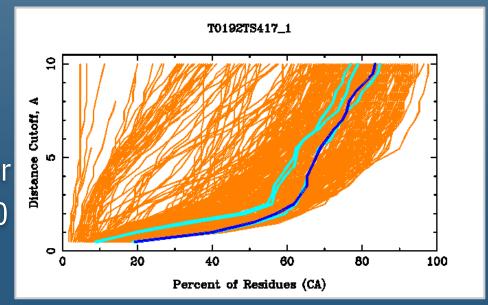
Protein Data Bank Japan

#### **Structure Resources**

#### **Annotation DB's**

- ◆ Domain parsing
- Biological hierarchies
- Structure neighbors

Examples: CATH, SCOP


#### **Structure Aligners**

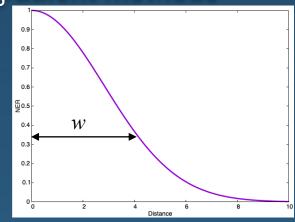
- ◆ Structural comparison
- Superimposing
- Scoring

Examples: Dali, GDT

## **GDT: Global Distance Test**

- ◆ Used for CASP
- Local alignments generated with LGA
- Weighted sum of the number of aligned residues within 20 different distance cutoffs (0.5, 1, 1.5...10 Å)




#### ASH:

Alignment of Structural Homologs

Standley, Toh, Nakamura Proteins 57, 2004

- Double Dynamic Programming combines local sampling with global scoring
- NER score replaces GDT discrete distance cutoffs with smooth Gaussian
- Allows direct optimization of superposition gradient methods

$$NER = \sum e^{-(d/w)^2}$$



### ASH:

# Alignment of Structural Homologs

- Genetic ASH (GASH)
  - Standley, Toh, Nakamura; BMC Bioinformatics
     2005
- ◆ Rapid ASH (RASH)
  - Standley, Toh, Nakamura; BMC Bioinformatics2007
- SeSAW
  - Standley, Yamashita, Kinjo, Toh, Nakamura;
     Bioinformatics 2010

## Can we make a database?

#### Workflow

- 1) Choose representative structures from the PDB
- 2) Slice representatives into domains
- 3) Align all domains against all domains
- 4) Build composite chain-level alignments

#### **Seems simple!**

## **Database Workflow**

- 1) Choose representative structures from the PDB
- 2) Slice representatives into domains
- 3) Align all domains against all domains
- 4) Build chain-level alignments
- 5) Add, remove, and modify as the PDB is updated

Oh, all of these steps are somewhat hard...

# PDB Issues

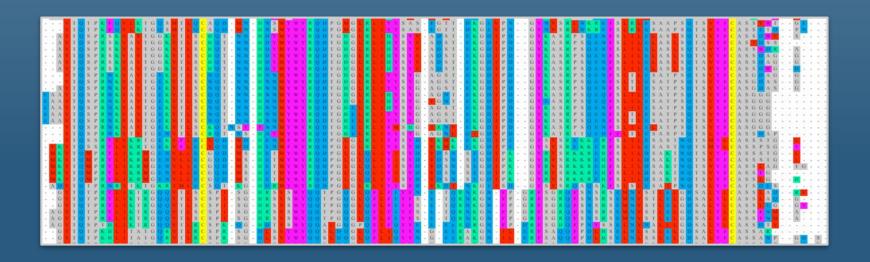
- ◆ Entries added every week...
  - ◆ ... and also removed
- Chain ID's sometimes change
- Parsing data is non-trivial
  - Alternate Locations
  - ◆ Insertion Codes
- Sequence/structure mismatch

Very difficult to build something on top of the PDB.

# **Structure Navigator**

Structure Navigator was an early prototype of DASH at PDBj






# **Issues with Structure Navigator**

- Complicated front-end and back-end code
- ◆ Slow to update
- ◆ Difficult to maintain
- Not widely used
- No clear sense of quality (completeness or accuracy)
   of the results

# How to assess quality?

Multiple sequence alignment might work



## MAFFT

+

ASH

- ASH residue-wise similarity used as restraints
- MSA benchmark sets can be used to evaluate the quality of the alignments
- ◆ PDP-ASH step to map domain alignments back to chain level

- MAFFTash web service released in 2009
- ◆ Tested, but not published

#### **MAFFTash Issues**

- Required user to manually select PDB templates
- ◆ Slow performance if data wasn't cached
- ◆ Cache problems:
  - Missing data could have multiple meanings
  - Cached output sometimes contained errors
  - ◆ Difficult to remove things from cache
- Many points of failure:
  - ◆ Shell scripts (BASH/TCSH), Perl scripts, C code...

## 2017

- ◆ Hired at RIMD to do computer infrastructure
- ◆ DASH update failing

#### Can we fix DASH?









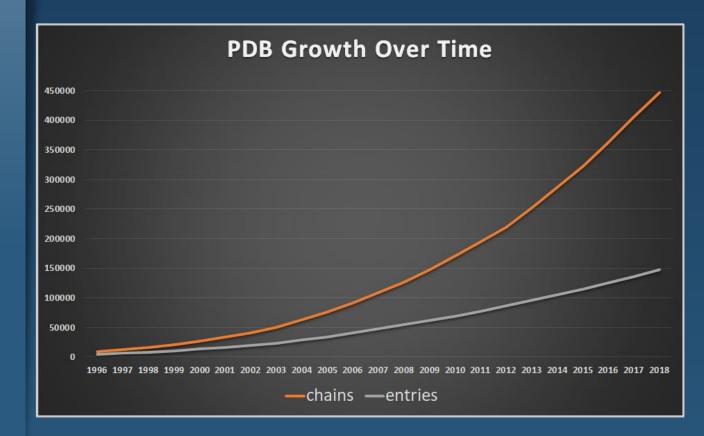


domain-domain alignments in

was DASH's last update

## Discoveries

- ◆ DASH is split between 2 different databases
  - ◆ Cache for MAFFTash
  - ◆ Generic domain alignment DB
- Weekly update crashes
- Intertwined with many other databases
- Empty REST interfaces (cannot be called by other software)


#### Let's start over!

## **Database Workflow**

- 1) Choose representative structures from the PDB
- 2) Slice representatives into domains
- 3) Align all domains against all domains
- 4) Build chain-level alignments
- 5) Add, remove, and modify as the PDB is updated

Oh, all of these steps are somewhat hard...

# PDB Growth



**Entry size is also increasing!** 

# 2018 Rebuild Plan

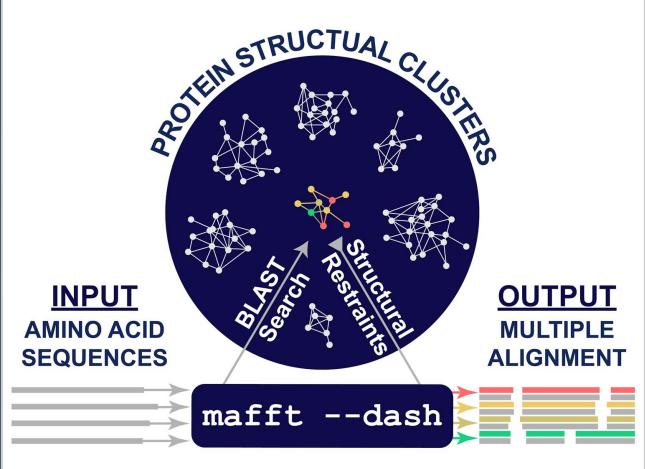
- ◆ Use Google Cloud for scaling
- ◆ Keep ASH as the core
- Update software
- Rewrite old workflow code in Go language
- Version control everything

## What is "Go?"



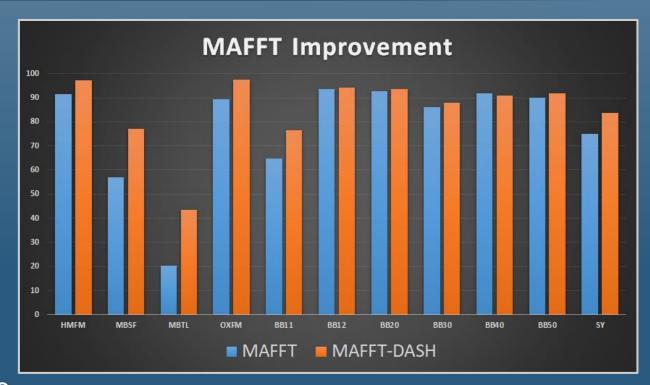
- ◆ Static Binaries
- ◆ Informative crashes
- ◆ Large standard library
  - ◆ SQL, HTTP requests, Zip, etc.
- Built-in support for multi-threading
- Faster than Python/Perl
- ◆ Safer than C

## 2018


- January
  - ◆ Google Cloud begins
- ◆ March
  - ◆ 5.5 B domain comparisons calculated on ~2500 CPU cores
- ◆ June
  - ◆ New PDP-ASH is written

- ◆ July
  - ◆ First MSA benchmark
- ◆ August
  - Alpha version opened
- October
  - First comparison with Promals3D
- ◆ December
  - Public beta started

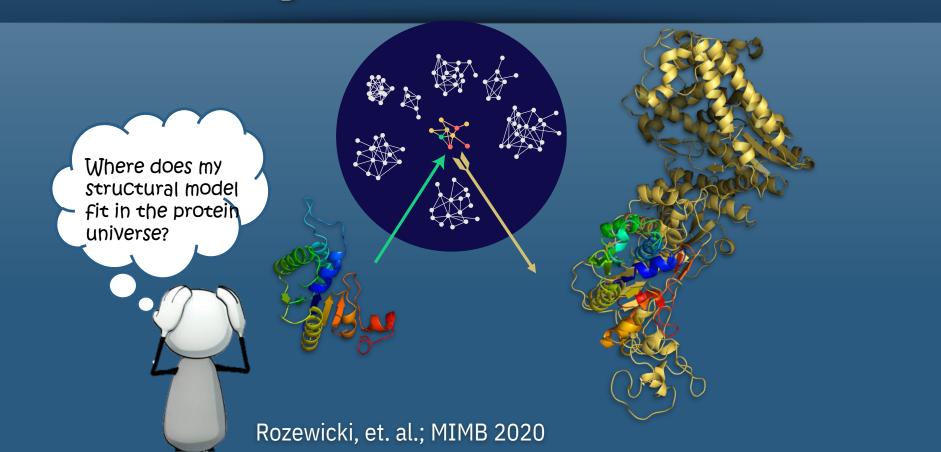
# MAFFT-DASH


MAFFT and
DASH can talk
to each other





## **MAFFT-DASH Benchmarks**


- ◆ 10% overall improvement
- >20%improvementon hardestcases
- Much faster than other tested methods



# 2019 Improvements

- ◆ ASH Rewritten in Go
  - Many bug fixes
  - Multi-core support
  - ◆ JSON output
- Rotation Matrices & Translation Vectors
- Search by Structure

# **Search by structure**

