DASH extensions (Immunology)

T cell - APC binding

Antibody- Antigen binding

DASH Extension 1: protein-RNA interactions

Example: protein-RNA interactions from DASH?

Overall distribution of nucleotides on Regnase-1

Nucleotideabundant

Nucleotide-scarce

Is this asymmetric distribution a coincidence?

RNA-binding Regnase-1-DASH hits are all ribosome components

DASH Score	PDB ID	Protein Chains	Complex
37	5OQL_P	C,R,T,Z,a,d,r,w,0	Pre-Ribosome
32	5WLC_SL	L9,LE,LU,NB,NC,NE, SA,	Processome
23	SC, SF, SI		
20	4A2I_V	L	Ribosome

What are these components?

Cleaving rRNA (utp24)

50QL_P: Pre-ribosome

5WLC_SL: Processome

2YKR_W: ribosome

UTP24: a Regnase-1 homolog in ribosomes

The PIN domain endonuclease Utp24 cleaves pre-ribosomal RNA at two coupled sites in yeast and humans
Graeme R. Wells, ${ }^{1}$ Franziska Weichmann, ${ }^{1}$ David Colvin, ${ }^{1}$ Katherine E. Sloan, ${ }^{1}$ Grzegorz Kudla, ${ }^{2}$, ${ }^{3}$ David Tollervey, ${ }^{2}$ Nicholas J. Watkins, ${ }^{1}$ and Claudia Schneider ${ }^{1, *}$

Architecture of the 90S Pre-ribosome: A Structural View on the Birth of the Eukaryotic Ribosome
Markus Kornprobst ${ }^{1,3}$, Martin Turk ${ }^{2,3}$, Nikola Kellner ${ }^{1}$, Jingdong Cheng ${ }^{2}$, Dirk Flemming ${ }^{1}$, Isabelle Koš-Braun ${ }^{1}$, Martin Koš ${ }^{1}$, Matthias Thoms ${ }^{1}$, Otto Berninghausen ${ }^{2}$, Roland Beckmann ${ }^{2,4} 2 \boxed{\otimes}$, Ed Hurt ${ }^{1,4}$ \& ■
$3.2-\AA \AA$-resolution structure of the 90 S preribosome before A1 pre-rRNA cleavage Jingdong Cheng, Nikola Kellner, Otto Berninghausen, Ed Hurt \& Roland Beckmann

The complete structure of the smallsubunit processome

[^0] Klinge ${ }^{\text {M }}$

Helicase may be required for utp24-mediated rRNA cleavage

acidic residues (E98, D131, D150 and D152) ${ }^{43}$. Importantly, we were also able to trace the RNA chain between the 5^{\prime} end of the pre- 18 S rRNA and the 3^{\prime} end of the 5^{\prime} ETS, visualizing the A1 cleavage site. The 3^{\prime} end of the 5^{\prime} ETS 'walks' along the surface of the 90S particle and points to the penultimate H9 of the 5' ETS. Unexpectedly, we found the Utp24 catalytic site close to the box A heteroduplex, which is more than $35 \AA$ away from the A1 cleavage site (U588) (Fig. 7a-c). Such a distance is a clear indication that the 90 S preribosome is still not yet in the processome modus regarding A1 cleavage (Fig. 7c,d). We suggest that after the 90 S is in a release-competent state, a currently unknown splitting factor/helicase mav be activated to unwind the box A/A' helices and unlock Utp24 together with the rRNA, thus resulting in endonucleolytic cleavage at site A1 (Fig. 7e).

Figure 7: Prerelease state, A1 cleavage and 90S-preribosome assembly.

Functional similarity:

Regnase-1 also helicase to unwind target RNAs

UPF1 unwinds in the 5 ' to 3^{\prime} direction

Therefore, Reg1 expected to cleave on 3' side of stem

DASH Extension 2: BCR/TCR modeling

MSAs encode structural information

Traditional AB modeling is Slow

Approach used by Rosetta, Schrodinger, etc. (thousands of hours!)

Adding a sequence to an existing MSA is fast ($<1 \mathrm{sec}$)!

Repertoire Builder: MAFFTDASH MSA + MAFFT v7
10,000 models in 30 min!

Repertoire Builder uses MSA-based approach

A. Prepare template MSAs

C. Extend template MSA
B. CDR template MSAs binned by length

Template MSA

Extended MSA

Repertoire Builder workflow

D. Rank templates

Query-template alignments

q-t $\mathrm{t}_{1}:=$
\square

Feature vectors ($\boldsymbol{v}_{\boldsymbol{i}}$) q-t t_{1} \dagger $\mathrm{q}-\mathrm{t}_{2}$

Weight vector (w) ...
E. Assemble 3D model

Repertoire Builder uses MSA-based approach

How important are MSAs?

Good MSAs are crucial

CDR3

Good MSAs are crucial

CDR1

CDR2

CDR3

11-211111 11-111111 11-111111 11-111111 11111-111 11-11-111 11-111111 11111-111 11-11-111 11-111111 11111-111 11111-111 11111-111 11-111111 11-11-111 11111-111 11-111111 11-111111 11-211111 11-111111 11111-121 11111-111 11-111111 11-11-111 12-11-111 11-11-111 11-11-111 11-11-111 11-11-111

222222-2-22---2222222 222222-2-22---2222222 $222222-2-22---2222222$ $222222-2-22---222222$ 222222-2-22---2222222 22222222-222222---222 222222-2-2222222----222222-2-22---2222222 2222-222-2222222--222 222222-2-2222222----
 这 222 No misalignment

 222222-2-22---2222222 2322-2-222222222~-22 2222-222-2222222--222 2222-2-22222-222----2222-2-22222-222----2222-2-22222-222-----2 2222-2-2-2222222----2222-222-2222222--222 2222-222-2222222--222 222222-2-222-222----2 2222-2-222222-22---22 222222-2-2222222----2 $22222-2-2222222----2$$222222-2-2222222----2$ $222222-2-2222222--0-2$
$2222-2-22222-22---22$ $2222-2-222222-22---22$
$2222-2-22222222---22$ $2222-2-22222222---22$
$222222-2-222222----2$

33--3-33----2---3-3----33
33--3-33--3333--3-3----33 33--3-33--3333--3-3---- 33 33--3-33----*--- 3-3-*-- 33 33333-33---------3-3---- 33 33--3--------------3----33 33--3-- $33-1$ 33--3-33--------3-3---- 33 33333-33-*------3-3-*--33 $33--3-3----\sim----3-3----33$
$33--3-33--3=-*--3-3--*-33$ 33--3-3--- $-\cdots---3-3---33$ 33--3-33---------3-3----33 33--3-33---------3-3----33 33--3-3------------333333
 33--3-33--------3-3---33 $33--3-33--3-----3-3---33$ 33--3-33--3-----3-3----33 33--3-33--3-----3-3---- 33 33--3-33--3-----3-3----33 33--3-3----*---- - 3-3---- 33 33--3-33---------3-3----33 $33--3-33--3-----3-3---33$ 33--3-3--------3-3----33 33--3-33--33----3-3----33 33~-3-33----~---3-3----33 33--3-33--3--33-3-3-*--33 33--3333---․----3-3----33 33--3------------3-3---- 33

Repertoire Builder Accuracy

BCR	TCR
CDR-H3 ERROR	CDR-B3 ERROR

Repertoire Builder
error was lower than other tested methods.

Extension to Antibody-Antigen docking

Build 3D models

Extension to Antibody-Antigen docking

Predict initial paratope and epitope

Extension to Antibody-Antigen docking

Dock antibody and antigen

$$
\begin{array}{lll}
\begin{array}{l}
\text { Initial epitope } \\
\text { prediction }
\end{array} & \text { Patches } & \text { Poses }
\end{array}
$$

Extension to Antibody-Antigen docking

Prepare improved features and predict final epitope

Significant improvement over Hex sampling

Significant improvement over Hex scoring

Quantitative improvement over ClusPro

Quantitative improvement over ClusPro

Docking performance comparison between Adapt and ClusPro

	Total query	Successful query	Total models	Successful models
Adapt	430	$156(36.28 \%)$	11218	$343(3.06 \%)$
ClusPro	430	$166(38.60 \%)$	11218	$227(2.02 \%)$

Distribution of three quality classes among successful models

	Successful models	Acceptable	Medium	High
Adapt	343	$306 / 343$	$35 / 343$	$2 / 343$
		(89.21%)	(10.20%)	(0.58%)
ClusPro	227	$186 / 227$	$39 / 227$	$2 / 227$
		(81.94%)	(17.18%)	(0.88%)

Adapt poses show low overlap with ClusPro

Adapt ClusPro

Antibody-specific epitope prediction

Extension to TCR-epitope-MHC modeling

https://sysimm.org/immune-scape/

\square
 ImmuneScape

TCR-pMHC modeling version 2019.39

ImmuneScape is the first automated TCR-epitope-MHC modeling server of its kind

Li et al. . Meth Mol Biol (2019)

Extension to T cell-APC cell modeling

Antigen presenting cell (APC)

Acknowledgements

Standley Lab

- John Rozewicki
- Kazutaka Katoh
- Songling Li
- Ana Davila
- Zichang Xu
- Floris van Eerdan

Collaborators

- Sho Yaasaki
- Shuhei Sakakibara
- Osamu Takeuchi
- Ai Tachikawa
- Eliane Piaggio
- Thomas Boehm

[^0]: Jonas Barandun, Malik Chaker-Margot, Mirjam Hunziker, Kelly R Molloy, Brian T Chait \& Sebastian

