PDBjing&創薬等情報拠点講習会

見てわかるタンパク質一生命科学のための立体構造データの利用法

UCSF ChimeraとModellerを用いた ホモロジー・モデリングと HOMCOSサーバによる複合体立体 構造の検索・モデリング

川端 猛 (大阪大学・蛋白質研究所・特任研究員)

kawabata@protein.osaka-u.ac.jp

2015年6月13日(土) 科学技術振興機構 東京本部別館 2階セミナー室

1

創薬等支援技術基盤プラットフォーム

解析拠点

制御拠点

情報拠点

解析拠点は、タンパク質の構造解析に 供する試料の調製、タンパク質の立体 構造解析及び計算科学を活用したパイ オインフォマティクス等に関する技術や 施設及び設備等を一貫して提供し、外 部研究者等のタンパク質立体構造解析 研究を支援します。

制御拠点は、創薬シーズ等の探索のた めに、化合物ライブラリーとスクリーニン グの技術基盤や施設及び設備等と、化 合物の最適化や新規骨格の構築等を行 う合成技術の基盤等を一貫して整備し て外部研究者等に提供します。 情報拠点は、タンパク3000プロジェクト 及びターゲットタンパク研究プログラム 並びに平成23年度創薬等支援技術基 盤プラットフォームの成果からなるデー タベースやソフトウエアを管理・運用しま す。また、それらを継続的に更新し、内 容の拡充や高度化を行います。

生産領域:タンパク質試料の調整 解析領域:タンパク質構造解析 バイオインフォマティクス領域:構 造予測等の計算化学

ライブラリー・スクリーニング領域: 化合物ライブラリーの提供スク リーニング機器の共用 合成領域:ヒット化合物の最適化 **情報領域**:データベース、 解析ツールの提供

プラットフォームをご利用希望の方は各拠点情報のページから詳しい支援メニューをご覧になり、ご 利用を希望する拠点の問い合わせ窓口または総合窓口(全般的なお問い合わせ)からお問い合わ せください。また、お申し込みは各拠点情報のページにあるお申し込みフォームからご登録ください。

情報拠点: 生物学者のニーズを的確に捉えた 情報解析ツールの開発がミッション アンケートに、ご要望・ご批判をたくさん書いていただけるとありがたいです 立体構造を用いた情報解析(モデリング、ドッキング等)の個別相談も受け付けています。

今日の内容

1. ホモロジー・モデリング法とは

<u>UCSF ChimeraとModellerを用いた演習</u>

- 2. 配列から相同な立体構造の検索
- 3. UCSF Chimeraによる配列と立体構造のアラインメント
- 4. Modellerを用いたホモロジー・モデリング

<u>HOMCOSを用いた演習</u>

- 5. HOMCOSを用いたタンパク質の結合分子の予測
- 6. HOMCOSを用いたヘテロ複合体構造の予測
- 7. HOMCOSを用いた化合物-蛋白質複合体構造の予測

<u>立体構造予測法の二つのアプローチ</u>

名称	ホモロジー・モデリング法 比較モデリング法 鋳型ベース予測法	非経験的方法 Ab initio 予測法 De novo予測法
手法の概要	鋳型立体構造にできるだけ似た形 で、立体構造を予測	鋳型構造を用いずに、物理化学的な 原理(分子シミュレーションの技法) に基づいて立体構造を予測
鋳型立体構造	必要	不要
一般性	低い	高い
計算量	少ない	多い
予測精度	似た鋳型があれば高い	高い精度を得るには大きな 計算量が必要
単体の立体構造予測	MODELLER, SWISS-MODEL	ROSETTA, EVfold,
蛋白質複合体予測	MODELLER, HOMCOS	ZDOCK, HADDOCK,
低分子タンパク質 複合体予測	MODELLER, HOMCOS, fkcombu	DOCK, AutoDock, sievgene, Glide,

ホモロジー・モデリングによる3次構造予測

原理: 立体構造はアミノ酸配列より保存しやすい.

立体構造データベースの中から、クエリ配列に 最も適合する「鋳型構造(テンプレート構造)」を探す

BLAST, プロフィール法, スレディング法....

鋳型(テンプレート)構造に従って全原子を構築 (1)側鎖原子の構築 (2)挿入ループ部を構築

MODELLER, FAMS,

MODELLER :http://www.salilab.org/modeller/modeller.html

エネルギー最小化計算による ホモロジーモデリング

MODELLER (http://www.salilab.org/modeller/) の場合

モデリングした構造の精度と用途

UCSF ChimeraとModellerを用いた ホモロジー・モデリング

配列から相同立体構造の取得

標的(予測対象)とするアミノ酸配列: UniProtの CALL5_HUMAN

CALL5_HUMAN: Calmodulin-like protein 5

SQ SEQUENCE 146 AA; 15893 MW; 70746291268494CC CRC64; MAGELTPEEE AQYKKAFSAV DTDGNGTINA QELGAALKAT GKNLSEAQLR KLISEVD<u>S</u>DG DGEISFQEFL TAAK<u>K</u>ARAGL EDLQVAFRAF DQDGDGHITV DELRRAMAGL GQPLPQEELD AMIREADVDQ DGRVNYEEFA RMLAQE

二つの変異体がUniProtに記載されている

VARIANT 58 58 S -> G

(polymorphism confirmed at protein FT level;dbSNP:rs11546426). VARIANT 74 74 K -> R

(polymorphism confirmed at protein FT level; dbSNP:rs10904516).

※ちなみに、ヒトの有名なカルモジュリンは、CALM_HUMANで、CALL5とは50%ほどの 配列一致率。

アミノ酸配列の取得と検索

1) Googleで"UniProt"と入力 2) UniProtのページのフォームに"CALL5_HUMAN"と入力

Google	UniProt		
	ウェブ 画像 動画 ニュース		
約 9,100,000 件 (0.21 秒)			
	UniProt		
	UniProt (Universal Protein Resource) is a central repository of protein sequence and		

4) メニューの[Format]から"FASTA(canonical)"を選ぶ

PDBjによる相同な立体構造(鋳型構造)の検索

2) PDBj<u>のトップページから"Sequence Navigator"を</u>選択

8 PDBj - Go	gle 検索 ×
Google	PDBj
	ウェブ ショッピング ニュース 画像 動画 も:
	約 332,000 件(0.43 秒)
	日本蛋白質構造データバンク - PDB Japan - PDBj
	papj.org//iang=ja ▼ 2015年1月27日の日本時間午前9時以際、PDBiのADITはX線結晶構場

1) Googleで"PDBj"と入力

3) [Search by sequence]のタブを選び、 フォームに、UniProtのページでコピーし たCALL5_HUMANの配列をペースト

ダウンロード	・[全サービスを表示する ・[キーワードボックス]	る]ボタンを押すと、全サービスの に、他の関連語句を入力して検索	ン概要が表示されます。 いたり、絞り込み検索をす	
PDBアーカイブからの データダウンロード		OBMRB	○ EMDB	
新フォーマット	○検索	○登録	○ビューア	
PDBx/mmCIFについ て	○教育/辞典			
フォーマット変換 🗗		○ 電子顕微鏡	〇二次構造	
	○ 配列	○類似性	○ 機能予測	
検索	〇化合物	〇構造予測	○結合部位	
ヘルプ	○ 表面構造	○ 立体構造		
PDB検索 (PDBj Mine)				
PDB詳細検索				
巨大構造エントリー	─ 最新情報			
化合物検索				
BMRB检索 🙇	<u>ニュース (2015年2月1</u>)	<u>4日)</u> 問手続きが恋わります		
Sequence-Navigator	FUBL / PUBL	開ナ航されタイプリより		
Structure-Navigator	<u>ニュース (2015年1月2</u> 2015年1月27日の日	<u>7日)</u> 日本時間左前6時以降 PDR:のAF	NT/+V線転目構造の啓録に	
EM Navigator	2015年1月27日の日本時間午前9時以降、PDBJのADITはX線結晶構造の登録に 線結晶構造の登録を開始する場合、wwPDB登録ツールをご利用ください。 NM			
Omokage検索 🗗	の手法による構造は	、当面はADITにてご登録くださ	L1.	

4) 対PDBの BLAST検索の結 果が表示される。 PDBコード"**1ahr**" のA鎖が、 sequence identity 51%でヒット。

→これを鋳型とする

Sequence navigator - Query sequence			
1ahrA	新規検索		
Sequence identity:	51%		
Sequence Positives:	73%		
E-value:	1.8897e-37		
Score:	380		
Query coverage:	99%		
Compound:	CALMODULIN		
Query 2 AGELTPEEEAO	YKKAFSAVDTDGNGTINAQELGAALKATGK		
< <u>Idiiix</u> 1 ingningiin.			
1ahrA 完全一致: <u>1f70A</u> <u>1j70/</u>	A 2kugA 2lqcA 2pq3A 3b32A		
4djcA	新規検索		
Sequence identity:	51%		
Sequence Positives:	73%		
E-value:	3.33274e-37		

Chimera: 鋳型構造の読み込み

1) Chimeraを起動して、メニューから [File]→[Fetch by ID...]を選ぶ。

2) [PDB]を選択、IDのフォームに"1ahr"と入力し、[Fetch]をクリック。

3) 左図のような構造が表示 されるはず。緑色の球はカル

4) メニューから[Tool]→[Sequence]→[Sequence] を選ぶ。と以下の ようなSequenceウィンドウが表示される。

Real chain A: calmodulin	_ [×
File Edit Structure Headers Numberings Tree Info Preferences			
1ahr (#0) chain A 1 ADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNF	TEA	EL	QD
1ahr (#0) chain A 51 MINEVDADGNGTID FPEFLTMMARKMKDSEEEIREAFRVFDKD	GNG	FI	SA
1ahr (#0) chain A101 AELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVTM	ITSK		
Helices/strands depicted in gold/green ARG 106.A	Quit Hic	le I	lelp

Chimera:標的配列の読み込み

1) Sequenceウインドウのメニューから [Edit]→[Add Sequence...]を選ぶと Add Sequenceのウィンドウが表示される。

ę	Alignment based o	on chain A: calmodulin		_ 🗆 🗡
File Edit Structure Headers Numberings	Free Info Preferences			
1 1 1ahr (#0) chain A 1 CALL5_HUMAN 1 MAGELTPEEE	11 AEFKEAFSLF AQYKKAFSAV	21 DKDGDGTITT DTDGNGTINA	31 KELGTVMRSL QELGAALKAT	41 GQNPTEAELQ GKNLSEAQLR
51 1ahr (#0) chain A CALL5_HUMAN 51 K L I S E V D S D G	61 NGTID <mark>FPEFL</mark> DGEISFQEFL	71 TMMARKMKDS T.AAKKARAG	81 EEEIREAFRV LEDLQVAFRA	91 FDKDGNGFIS FDQDGDGHIT
101 1ahr (#0) chain A 100 A A E L R H V M T N CALL5_HUMAN 100 V D E L R R A M A G	111 LGEKLTDEEV LGQPLPQEEL	121 DEMIREADID DAMIREADVD	131 GDGQVNYEEF QDGRVNYEEF	141 VTMMTSK ARMLAQE
			sequence p	position 133 Quit Hide Help

Chimera:変異箇所の立体構造の確認

SNPが報告されている 58番目のS (S->G)の立体構造上の位置を確認してみる。 VARIANT 58 S -> G (polymorphism confirmed at protein FT level).

MAGELTPEEE AQYKKAFSAV DTDGNGTINA QELGAALKAT GKNLSEAQLR KLISEVD<u>S</u>DG DGEISFQEFL TAAK<u>K</u>ARAGL EDLQVAFRAF DQDGDGHITV DELRRAMAGL GQPLPQEELD AMIREADVDO DGRVNYEEFA RMLAOE

ę	Alignment	t based on chain A: calmodulin		_ 🗆 🗙
File Edit Structure Head	ers Numberings Tree Info Prefere	nces		
1 1 1ahr (#0) chain A 1 . A CALL5_HUMAN 1 M A	11 DQLTEEQI AEFKEAF GELTPEEE AQYKKAF	SLF DKDGDGTITT SAV DTDGNGTINA	31 KELGTVMRSL QELGAALKAT	41 GQNPTEAELQ GKNLSEAQLR
51 1ahr (#0) chain A CALL5_HUMAN 51 K L	61 NGTIDFP ISEVDSDG DGEISFQ	71 EFL TMMARKMKDS EFL T.AAKKARAG	81 EEEIREAFRV LEDLQVAFRA	91 FDKDGNGFIS FDQDGDGHIT
101 1ahr (#0) chain A100 A A CALL5_HUMAN 100 V D	111 ELRHVMTN LGEKLTD ELRRAMAG LGQPLPQ	121 EEV DEMIREADID EEL DAMIREADVD	131 GDGQVNYEEF QDGRVNYEEF	141 VTMMTSK ARMLAQE

1) 58番目のS (VDSDG)を探し、それに対応する構造部位(この場合はA)をマウスで選択する。

2) 選択された状態で、
 [Actions]→[Atoms/Bonds] →[Show]
 とすると、選択された構造部位がスティック表示される。

※同様に74番目のK -> R の位置も確認してみる

Chimera:標的配列のCa²⁺結合部位の推定

鋳型立体構造(1ahr)のCa²⁺イオンの結合部位を求め、sequenceウィンドウで対応する標 的配列の部位を確認すればよい。

- 1) メニューから[Select]→[Residue] →[CA]を選択し、 Ca²⁺イオンを選択。
- 2) メニューから[Select]→[Zone...] を選択する。
- 3) Select Zone Parameterのウィンドウが表示される。 一番上のフォームの"5.0"を"**4.0**"に書き直して、[OK] をクリックする。
- 4) 選択された状態で、[Actions]→[Atoms/Bonds] →[Show] で、Ca²⁺結合部位がスティック表示される。

5) 選択された状態で、sequenceウィンドウを確認すると、Ca²⁺結合部位が緑色で強調表示されている。

Modellerによるホモロジーモデリング(1)

- 1) sequenceウィンドウから[Structure]→[Modeller(homology] を選択
- Alignment based o
 File Edit Structure Headers Numberings Tree Info Preferences

 1 11
 ADQLTEEQI AEFKEAFSLF
 1 MAGELTPEEE AQYKKAFSAV
- 2) Modellerウィンドウの、Choose the targetを"CALL5_HUMAN"とし、 Choose at least one template:を1ahr(#1) chainAを選択する。

Comparative Modeling with Modeller	Comparative Modeling with Modeller − □ ×
Choose the target (sequence to be modeled):	Choose the target (sequence to be modeled):
Choose at least one template: <u>Eetch Structures/Annotations</u> Sequence Structure ID %ID Title Organism CALL5_HUMAN 50.7%	Choose at least one template: <u>Fetch Structures/Annotations</u> Sequence Structure ID %ID Title Organism Tahr (#0) chain A 50.7%
Run Modeller via web service Run Modeller locally Location of Modeller executable: les¥Modeller9.14¥lb¥x86_64-w64¥rr Browsel	C Run Modeller via web service C Run Modeller locally Location of Modeller executable: [es¥Modeller9.14¥lb¥x86_64-w64¥rr Browse]
Modeller script file (optional, overrides dialog): Browse Get Current Modeller Script	Modeller script file (optional, overrides dialog): Browse Get Current Modeller Script Advanced Options
OK Apply Close Help	OK Apply Close Help

3) [Advanced Options]をクリックし、 [Number of output models]を1とし、 [Include non-water HETATM residues from template]を☑する。

Adv	Advanced Options	
	Number of output models: 4 (max 1000)	
	Include non-water HETATM residues from template: 🔽	
	Include water molecules from template:	
	Build models with hydrogens: 🔲 (warning: slow)	
	Use fast/approximate mode: 🗖 (produces only one model)	
	Use thorough optimization: 🗖 (recommended with MDA)	
	Temporary folder location (optional):	Browse
	Distance restraints file (optional):	Browse

ローカルにModellerを起動するための注意

Location of Modeller executableを設定する必要があります。

2 Star	C Run Modeller via web service		
💮 🕞 Run Modeller locally			
	Location of Modeller executable: mod9v9 Browse		
	Modeller script file (optional, overrides dialog): Brows		
	Get Current Modeller Script		

デフォルトではmod9v9に なっていますが、このままでは 動きません。

<u>Windowsの場合の設定例</u>

×.	C Run Modeller via web service		l re
	© Run Modeller locally		
	Location of Modeller executable: C:¥Program Files¥Modeller9.14¥lib¥x86_64-w64¥mod9.14.exe	Browse	
	Modeller script file (optional, overrides dialog):	Browse	
	Get Current Modeller Script		天

[Browse]をクリックして フォルダを移動し、 Modellerの 実行ファイルを選択

C:\Program Files\Modeller9.14\Ib\X86_64-w64\mod9.14.exe

<u>Macintoshの場合の設定例</u>

203.	Run Modeller via web service							
- 1	Run Modeller locally							
1	Location of Modeller executable: /usr/bin/mod9.14	Browse						
1	Modeller script file (optional, overrides dialog):	Browse						
	Get Current Modeller Script							

[Browse]をクリックして フォルダを移動し、 Modellerの 実行ファイルを選択

/usr/bin/mod9.14

※バージョンやインストール場所によって詳細は異なります。各自の設定に合わせてください。

Web Serverを利用する場合

ローカルのModellerを起動できない場合、Chimeraの開発グループが用意した Web serverを利用することができます。

Q	Comparative Modeling with Mo	odeller – 🗖 🗙	
AT CC	Choose the target (sequence to be modeled):	CALL5_HUMAN	アカデミックライセンスの
₿ĩ	Choose at least one template:	Eetch Structures/Annotat	<u>ライセンスキー文字列</u> を
<u>></u>	Sequence Structure ID %ID Title Org	anism	入力する必要があります。
Adv	Image: Second	Modeller home page	アカデミックの方が、ライセンス キーを取得するには http://salilab.org/modellerにア クセスし、[Registration]から、 ユーザー情報を入力してくださ い。しばらくすると、ライセンス キーの文字列が電子メールで 送付されます。

※Web Serviceを利用した場合も、ローカルに起動した場合も以後の手続きは同じです。

5) 計算が終了すると、鋳型構造とモデル構造が表示される。

6) [Favorites]→[Model Panel] を選択

Model Panelウィンドウの[Shown]の☑のオン・オフで、オブジェクトの表示・非表示を選択可能。

UCSF Chimeraだけで実行できる解析

- ・リガンド分子と近接している残基の同定
- ・指定した原子間の距離の計測
- ・分子表面の表示
- ・静電ポテンシャルによる分子表面の色付け
- ・アミノ酸配列と立体構造とのアラインメント
- ・進化的保存が高い部位の立体構造上の位置の観察
- アミノ酸置換構造のモデリング
- ・相同な二つの立体構造の比較
- ・モーフィングアニメーション

見てわかる 構造生命科学—生命科学 研究へのタンパク質構造の利用— 中村春木 編 化学同人 税抜5000円 RasMol, UCSF Chimera, PyMOLの使い方を解説

その他にも以下のようなモデリングに関する機能が あります

- ・水素原子の付加 [Tools]→[Structure Editing]→[AddH]
- ・部分電荷の付加 [Tools]→[Structure Editing]→[Add Charge]
- ・低分子ドッキングプログラム Auto Dock Vina の実行 [Surface/Binding Analysis]→[AutoDock Vina]
- ・ドッキング候補ポーズの解析 [Surface/Binding Analysis]→[ViewDock]

HOMCOSを用いた 複合体構造のホモロジー・モデリング

HOMCOS: 複合体立体構造の検索・ホモロジーモデリングのサーバ PDB内の<u>複合体</u>の立体構造データを検索し、それを鋳型にモデリングする ・配列相同性検索はBLAST、化学構造類似性検索はKCOMBUを使用 "HOMCOS"でグーグル検索 ⇒ http://homcos.pdbj.org

<u>HOMCOS が提供するサービス</u>

BLAST, プロフィール法, スレディング法....

MODELLER, FAMS,

🗳 CDK3を題材をした結合分子予測

CDK3_HUMAN (Cyclin-dependent kinase 3)

1) Googleで"HOMCOS"と入力

(←)→ 8	https://www.google.co.jp/?gws_r 🔎 - 🔒 🖒 🏠 🖈 🔅
8 HOMCOS	- Google ×
Google	HOMCOS
	ウェブ 地図 画像 動画 ニュース もっと見る → 検索ツ
	約 120,000 件 (0.25 秒)
	HOMCOS : 相同複合体の検索・モデリングサーバ homcos.pdbj.org/?LANG=ja マ HOMCOS(HOMology modeling of COmplex Structure) は、PDBに収納されて ✔
<	>

2) 「タンパク質に対する検索」を選ぶ

😂 HOMCOS	:相同複合 ×		
	H C	ME	2 S
	HOMCOS:相同	司復合体の検索・モ	デリングサーバ
[Go to English pa	gel 🖓 <u>1174-2</u>		
HOMCOS/HOM	alogy modeling of COmplex Structure) [7, 1	PDBに収納されてい	る複合体の立体構造データを利用して、分子の類似性・#
司性から、構造オ ナている他の分子	知の分子ペアの構造を予測するためのサ そを探索したり、PDB内の構造を鋳型にして	ーバです。アミノ酸語 複合体立体構造を	記列や化学構造から、PDB内から複合体の立体構造が解 影測することができます。
サービス		シエワ(injい言わせ)	説明
1	0.~		I
結合分子の特	タンパク質に対する検索	アミノ酸配列	1本のアミノ酸配列をクエリとして、 それと類似したタンバク質と結合している分子を検索し ます
結合 分子 の柄 索	シニジ類に対する検索	アミノ酸配列 化学構造	11本のファン酸配列をクエリとして、 それと類似したタンバク質と結合している分子を検索します 1つの化合物構造をクエリとして、 それと類似した化合物と結合しているタンバク質を検索 します。
結合分子の将 索	シンパク質に対する検索 化合物に対する検索 1 <	アミノ酸配列 化学構造 アミノ酸配列	11本のファン酸配列医クエリとして、 それと類似したダンバク質と結合している分子を検索します。 ロンの化合物構造をクエリとして、 それと類似した化合物と結合しているダンバク質を検索 します。 1本のファン酸配列医クエリとして、 そのホモ多量体の立体構造をホモロジーモデリングを用 いて予測します。
結合分子の将 索 複合体立体構 造の モデリング		アミノ酸菌で利 化学構造 アミノ酸菌で利 2本のアミノ酸菌で 利	11本のファン増配わ除クエリとして、 それと類似したダンバク質と結合している分子を検索し ます 1つ2の化合物構造をクエリとして、 それと類似した化合物と結合しているタンバク質を検索 します 1本のファン酸配わ除クエリとして、 そのホモ多量体の立体構造をホモロジーモデリングを用 いて予測します 2本のファン酸配わ除クエリとして、 そのへテロ多量体の立体構造をホモロジーモデリングに よって予測します

3) UniProtIDのフォームに "CDK3_HUMAN"と入力して、 [SEARCH]をクリックする。

問い合わせ蛋白質の配列は以下の4通りで入力可 (i) PDB_ID+鎖 (ii) PDBファイルのアップロード (iii) UniProt ID (iv) アミノ酸配列

→「タンパク質に対する検索」結果のトップ画面(CDK3)

・単量体、複合体構造は、デフォルトでは代表構 ・相同性のしきい値は、デフォルトではE-造だけがバー表示されている。アライメント領 value<0.001だけで、同一残基率は0%に設定してあ 域・相互作用部位によって代表を決めている。 る。よりしきい値を上げれば(30%,40%,...,95%)、候 補構造は減るが、予測の信頼性は向上する。 全ての相同な立体構造を表示する場合は、 [bars:full]をクリックする。 - C M C G S [Back to HOMCOS] bars:full] [SiteTable] Back to Search Page Contact Bar(summary)[0.0 %] ċśż ĊŚÝ seq id(%): [0] [30] [40] [50] [60] [70] [80] [90] [95] [100] [download] [show] PID QueryLength Homolgous Sequence in PDB UNIPROT QUERY TITLE 29409 305 CDK3 HUMAN (AC:Q00526 ID:CDK3 HUMAN) RecName: Full=Cyclin-dependent kinase 3; EC=2.7.11.22; AltName: Full=Cell division protein kinase 3 OUERYSEO AFGVPLRTYTHEVVTLWYRAPEILLGSKFYTTAVDIWSIGCIFAEMVTRKALFPGDSEIDQLFRIFRMLGTPSEDTWPGVTQLPDYKGSFPKWTRKGLEEIVPNLEPEGRDLLMQLLQYDPSQRITAKTALAHPYFSSPEPSPAARQVVL ORFRH [BLAST file for PDB] [BLAST for UniProt: (plain) (bar) (multiple alignment) (PSSM file) UniProt Feature Tables [Q00526(CDK3 HUMAN)] 305 region name description 1-305 CHAIN Cyclin-dependent kinase 3. /FTId=PRO 0000085776. DOMAIN Protein kinase. {ECO:0000255|PROSITE- ProRule:PRU00159 4-286 NP BIND ATP. {ECO:0000255 PROSITE- ProRule: PRU00159} 10-18 127-127 ACT SITE Proton acceptor. {ECO:0000255 PROSITE- ProRule:PRU001 33-33 BINDING ATP. {ECO:0000255|PROSITE- ProRule:PRU00159} Modeller script] LL MOLECULE IN THE MONOMER 11 in assembly id:2] 305 pdb_id identity description CDK2 HUMAN CYCLIN-DEPENDENT KINASE 2 🕴 1 fin C 76.7 HETERO 30582のアイコンをクリックすると単量体 の立体構造モデルが表示される

⊘ HOMCOS(prot_sch_...×

SD Structure of Monomer						
	pdb_id	identit	description			
	asym_id	76.7	CDK2 HUMAN CYCLIN-DEPENDENT KINASE 2			
t	<u></u>	-11				
305	5	con	tact mol	hom	nologue	
· · · · · ·	pdb_id	asy	n_id_description	asyı	n_i l SqID (%)	lescription
	201]	D	CCNA2 HUMAN Cyclin-A2[255 aa]	С	77.9	CDK2 HUMAN Cyclin-dependent kinase 2
	88 <u>3f5x[</u>	10] B	CCNA2 HUMAN Cyclin-A2[256 aa]	С	76.7	CDK2 HUMAN Cell division protein kinase 2
	Stabern	[1] D	CCNA2 HUMAN CYCLIN-A2[236 aa]	C	78.2	CDK2 HUMAN CYCLIN-DEPENDENT KINASE 2
	801qm2	[4] F	SUBSTRATE PEPTIDE[7 aa]	С	78.2	CDK2 HUMAN CELL DIVISION PROTEIN KINASE 2
1 11 1 1 1 1	801fq1[1] A	CDKN3 HUMAN CYCLIN-DEPENDENT KINASE INHIBITOR 3[183 aa]	В	78.2	CDK2 HUMAN CELL DIVISION PROTEIN KINASE 2
	2000[1	I] F	CDC6 HUMAN CELL DIVISION CONTROL PROTEIN 6 HOMOLOG[14 aa]	С	78.2	CDK2 HUMAN CELL DIVISION PROTEIN KINASE 2
· · · · · · · · · · · · · · · · · · ·	83ghw	[4] E	CDK2 substrate peptide: PKTPKKAKKL[10 aa]	A	78.2	CDK2 HUMAN Cell division protein kinase 2
BINE IN IN IN IN IN	2jgz[1	1] B	CCNB1 HUMAN G2/MITOTIC-SPECIFIC CYCLIN-B1[260 aa]	Α	78.2	CDK2 HUMAN CELL DIVISION PROTEIN KINASE 2
- I I I I III	822cci[1	1] E	CDC6 HUMAN CELL DIVISION CONTROL PROTEIN 6 HOMOLOG[19 aa]	Α	78.2	CDK2 HUMAN CELL DIVISION PROTEIN KINASE 2
	1000 [[1] B	CKS1 HUMAN PROTEIN (CKSHS1 HUMAN)[70 aa]	A	78.1	CDK2 HUMAN PROTEIN (CDK2 HUMAN)
相互作用部位			コンタクトしている別の タンパク質の分子名 ③ のアイコンをクリック すると ヘテロ複合体の 立体構造モデルが まったわる			と鋳型の同一残基率(%) まど予測の信頼性が高い
			表示される ほうしょう	D 1 (D) polymer (polypeptide (L)) (L))	CNA2 HUMAN	→ 371, 394, 404, 414, 412, 412, 414, 448, 415, 415, 511 355, 656, 757; FH 274, 616, 1494, 1436, 1494, 1436, 1414, 1214, 3580, 1514, 1527, 1547, 1559, 1537, 1537, 1597, 1607 1627, 1647, 2746, 2746, 2746, 1574, 1597, 1697

→ ヘテロ複合体立体構造の表示(CDK3)

4QE, 4SPなどはPDBの3文字表記の分子名

➡ 化合物ータンパク質複合体(CDK3)

		Sit	e	Tak	ble		[bars:full]	ble] seq_id(% コンタク	Contact Ba)): [0] [30] [40] 7トバー表え	ar(summary [50] [60] [7 示の画面	[;])[0.0 %] 0] [80] [90] [9: 〕上のこの	<u>Back</u> 5] [100] アイコンを	to Search をクリッ	<u>Pagel</u> ر
				[bars:summary]	[bars:full] seq_id((%): [<u>0]</u> [<u>30</u>	1 M E e 2 E H b 3 F H b Site Table[0.0 %]	[90] [95] [100]	sack to Search Page	Back to HON	ICOS]			
PID		OuervLength	Homolgous	Sequence in PDE	UNIPROT OUE	ERY		TITLE	Lanow]	Lowin				
29409		305	500		CDK3_HUMAN	N (AC:Q005	526 ID:CDK3_HUMAN)	RecName: Full=0	Cyclin-dependent ki	inase 3; EC=2.7	.11.22;AltName: F	ull=Cell division	orotein kinas	e 3;
QUER [BLAST file for [n]:site r [e]:predic	TYSEQ	MDMFQKVEKIG AFGVPLRTYTH QRFRH [BLAST for of query se posed/burie inding othe	EGTYGVVYKA EVVTLWYRAP UniProt: (pl: quence. [d [acc]:p	KNRETGQLVALKKI EILLGSKFYTTAVD ain) (bar) (multipl a]:amino acid redicted acces	RLDLEMEGVPSTAII IWSIGCIFAEMVTRH e alignment) (PSS of query sequer ssibility of r alimino Acid	REISLLKELI KALFPGDSE: SM file)] nce. [s]	HERNIVELLOVVHNERKLIV IDQLFRIFRMLGTPSEDTWPG predicted secondry s	FEFLSQDLKKYMDS VTQLPDYKGSFFKW tructure. ,log	TPGSELPLHLIKSYLE TRKGLEEIVPNLEPEG Ous structure.	FQLLQGVSFCHSH GRDLLMQLLQYDP	SQRITAKTALAHPYF	ELGAIKLADFGLAR SSPEPSPAARQYVL niProtのア. eature Tab	ノテーシ ole) ↑	
		ndh	contact mo			而百	゚゚゚ ゚゚ ゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚	ッー			hearrad as	faatura tabla	variant	
				1.5						0	oserveu aa		Varian	
M I	e 51.	.7 <u>3mtl_A</u>	homo preci	pitant						M	LIVQ			
SITE 2 D	e 98.	.0 amtl A	hetero CCN	JA2 HUMAN CO	G2A HUMAN ho	mo precipit	ant			ם	ENKGQST			
SITE <u>3</u> M S	5 e 41.	.6 3mt1 A	hetero CCN	JA2 HUMAN or		presipi				R	DKNVEILQCMSTFHA	<u> </u>		
SITE 4 E E	E b \	5 200 D		<u></u>	prome					Y	FWL			
	e 24.	.6	precipitant	山							OKDTRVHINLACMSY			
		<u> 2f2c E</u>	谷 妹路	ଘ凒(≫)	MOUSE					=	~		II =	
SITE <u>6</u> K	<u> </u>	次構造	ἑ(Η :α∕	ヘリックス	、 <u>Ε</u> :βシー	-ト)				_ 相同	配列群の	アミノ酸	頻	
SITE	をク	リック	すると	:特定の	サイトの	まとな	カのページカ	が表示さ	れる	「 度。場 したフ	頁度順に アミノ酸だ	ソート。と け表示	出現	

(1) 埋もれている部位(溶媒露出度accが 小さい部位)に変異が入ると、天然構造が 不安定になり、機能を失活しやすい。 (2) 相同タンパク質群で観察されるアミノ酸の割合(observed aa)が大 きい(よく観察される)アミノ酸に変異した場合、機能への影響は小さい。 逆に、稀にしか観察されないアミノ酸に変異した場合は、機能を失いや すい。SIFT scoreなど多くのプログラムがこの原理に基づく。

3番目の部位のまとめ(CDK3)

(⇐) ↔ @ http://ipproo.protein.osaka-u.ac.jp/homcos/cgi-bin/prot_sch_eachsite.cgi?QUNIPI 오 - ৫ 🕆 ★ 🌣	
HOMCOS:	
Summary for the 3-rd Site(M)	
PID QueryLength FocusSite TITLE	
8404 305 3 M RecName: Full=Cyclin-dependent kinase 3; EC=2.7.11.22; AltName: Full=Cell division protein kinase 3;	
UniProt Information	
AC/ID AC:Q00526 ID:CDK3_HUMAN	
Feature Table for 3-th site CHAIN: Cyclin-dependent kinase 3. /FTId=PRO_0000085776.	
	Ŧ
Percentage of Amino Acids in Homologous Protein 相同的の アフレー 相同的の アフレー 相同的 アフレー アンド アンド アンド アンド アンド アンド・アンド アンド・アンド アンド・アンド アンド・アンド アンド・アンド アンド・アンド アンド・アンド アンド・アンド・アンド アンド・アンド・アンド・アンド・アンド・アンド・アンド・アンド・アンド・アンド・	ż٥
R:18% D:15% K:14% N:6% Q:6% V:6% E:5% I:5% L:5% C:4% M:4% S:3% T:3% H:2% F:2% A:1% G:1% 頻度順にソート。出現した	
3D Structure Information アミノ酸だけ表示	
Template For Monomer predicted SecStr predicted ExpBur Predicted Relative Acc(%)	
S (bend) e (exposed) 41.6	
3D Complex Information	
Predicted Bind Molecules	
precipitant:1 hetero:7	
Templates for 3D complexes	
precipitant [EDO] 😂 3qu0 A 1 E 1 hetero [3508:CCNA2 HUMAN 😂 3f5x C 2 B 3 😂 3f5x A 4 D 1 😂	
$2v22 C 1 B 1 \textcircled{2}{1}_{1} \textcircled{3}{1}_{1} \textcircled{3}{1}_{1} \textcircled{3}{1}_{1} \textcircled{3}{1}_{2} \rule{3}{1}_{2} \textcircled{3}{1}_{2} \rule{3}{1}_{2} 3$	
これらのPDBのIDをクリックすると、この部	

体立体構造のモデルが表示される。

3番目の部位がタンパク質間相互作用部位 となる例(CDK3)

SPIC_HUMANの場合の 「タンパク質に対する検索」のトップ画面

BLAS UniPro

SPIC HUMAN (Transcription factor Spi-C)

	PID	QueryLength	Homolgous	Sequence	in PDB	UNIPROT_QUERY	TITLI	E		
	30875	248	54			SPIC_HUMAN (AC: <u>Q8N5J4</u> ID:SPIC_HUMAN)	RecN	ame: Full=	Transcription factor Spi-C;	
	QUERYSEQ	MTCVEQDKLGQAFEDAFEVL	QHSTGDLQYS	PDYRNYL	LINHRPHVKGNS	SCYGVLPTEEPVYNWRTVINSAADFYFEGNIHQSLQNITENQLVQPTLLQQ	KGGKGRK	KLRLFEYL	HESLYNPEMASCIQWVDKTKGIFQFVSKNKEKL	
BLAST file for PDB1 (BLAST for	UniProt: (nla	in) (har) (multiple alignme	nt) (PSSM fi		11QF5LAILQRL	SPSIFLGREIFISQCVQPDQEILSLNNWNANINIIIANINELMINDC				
DEAST INC INTED [DEAST IN	onn iot. <u>(pia</u>	ing (our) (indicipie angline	<u>III) (I 55141 II</u>							
JniProt Feature Tables <u>[Q8N5J4</u>	(SPIC HUM	<u>AN)]</u>								
		2	248							
	I		region	name	description					
			1-248	CHAIN	Transcripti	on factor Spi-C. /FTId=PRO_0000204140.				
			111-194	DNA_BI	ND ETS. {ECC	0:0000255 PROSITE- ProRule:PRU00237}.				
-										
MONOMER										
		2	248							
. I			pdb_id asym_id	identi	y description					
			821pue F	59.6	SPI1 MOU	SE PROTEIN (TRANSCRIPTION FACTOR PU.1 (TF PU.1))				
			88 <u>4bqa A</u>	30.9	ETS2 HUN	IAN PROTEIN C-ETS-2				
		ha an an tha an	80 <u>1r36 A</u>	30.4	ETS1 MOU	ISE C-ets-1 protein				
HETERO										
		2	248 ndb id	contac	t mol		homolog	ue		
	I			asym	id description		asym_id	SqID(%)	description	
			82 <u>1k78</u> [2] E	PAX5 HUN	MAN Paired Box Protein Pax5[124 aa]	F	37.1	ETS1 MOUSE C-ets-1 Protein	
			82 <u>1mdm</u>	[1] C	PAX5 HUN	IAN PAIRED BOX PROTEIN PAX-5[124 aa]	D	36.2	ETS1 MOUSE C-ETS-1 PROTEIN	
		11	82 <u>1k78</u> [1] I	PAX5 HUN	<u>MAN</u> Paired Box Protein Pax5[58 aa]	F	37.1	ETS1 MOUSE C-ets-1 Protein	
			88 <u>4118</u> [1]] A	RUNX1 M	DUSE Runt-related transcription factor 1[142 aa]	В	37.1	ETS1 HUMAN Protein C-ets-1	
	HH		801awc[1] D	GABP2 MC	DUSE PROTEIN (GA BINDING PROTEIN BETA 1)[153 aa]	С	36.7	GABPA MOUSE PROTEIN (GA BIND)	NG PROTEIN ALPHA)
NUCLEOTIDE										
		2	248 ndb id	contac	t mol		homolog	ue		
	1		puo_iu	asym_	id description		asym_id	SqID(%)	description	
		1011 10	88 <u>1pue</u> [2] C	DNA (5'-D(*AP*AP*AP*AP*AP*GP*GP*GP*GP*AP*AP*GP*TP*	F	59.6	SPI1 MOUSE PROTEIN (TRANSCRIP	ION FACTOR PU.1 (TF PU.1))
			Se Ipue 2	јВ	DNA (5'-D(*TP*CP*CP*CP*AP*CP*TP*TP*CP*CP*CP*CP*TP*	E	59.1	SPI1 MOUSE PROTEIN (TRANSCRIP	ION FACTOR PU.1 (TF PU.1))
			824mhg[1] A	Specific 14	bp DNA	С	44.9	ETV6 MOUSE Transcription factor ETV	6
			82 <u>4mhg</u>	1] B	Compliment	ary Specific 14 bp DNA	С	44.9	ETV6 MOUSE Transcription factor ETV	6

のアイコンをクリックすると核酸ータンパク質複合 3D 体の立体構造モデルが表示される

核酸タンパク質複合体(SPIC)

A (a) (a) http://ipproo.protein.osaka-u.ac.jp/homcos/cgi-bin/model3D.cgi?PID=30875

🙆 HOMCOS(prot_sch_co... 🙆 Protein Model on 1p... ×

Protein Model on 1pue_F_1_C_1 (TEMPLATE: PDBj_1pue

デフォルトでは一つの標的タンパク質と一つの結合分子が一対一で表示される。 二重鎖DNAのように、必ず2分子がセットになる分子ではおかしなことになる。

核酸タンパク質複合体(SPIC)

➡ARSA_HUMANの場合のSite Tableの画面

ARSA_HUMAN(Arylsulfatase A)

[Back to Search Page]

Site Table[0.0 %] seq_id(%): [0] [30] [40] [50] [60] [70] [80] [90] [95] [100]

PID	QueryLength	Homolgous Sequence in PDB	UNIPROT_QUERY	TITLE	TITLE					
9107	507	36	ARSA_HUMAN (AC: <u>P15289</u> ID:ARSA_HUMAN)	RecName: Ful component B;	Name: Full=Arylsulfatase A; Short=ASA; EC=3.1.6.8;AltName: Full=Cerebroside-sulfatase;Contains: RecName: Full=Arylsulfatase ponent B;Contains: RecName: Full=Arylsulfatase A component C;Flags: Precursor;					
QUERYSE [BLAST file	ast file 度(%) Ast for U (44 へいっの) [1]21 (1)21 (2)2									
[n]:site number of query sec [e]:predicted exposed/buried [contact_mols]:binding other n a s elacc pdb contact mols observed aa					ry struc]:PDB co gous sequences. [variant]:UniProt Human Variant. [reature table]:UniProt Feat table	ure Table				
SITE 1 D.C			N	CICNI/	T					

n	a s	e acc	pdb	contact_mols	observed aa	feature table	variant
SITE 1	М-		-		M	SIGNAL	
SITE 2	G -		-		AKG	SIGNAL	
		1-1-	1 1	ir i	r a	1	r il

ITE <u>27</u>	F	E b	0.5	<u> 883b5q B</u>		LMIFVT		
ITE <u>28</u>	Α	E b	0.0	<u> 83b5q_B</u>		ATVML		
ITE <u>29</u>	Ð	T b	0.6	88 <u>3b5q_B</u>	precipitant metal <u>CA MG NA</u> compound <u>CSN</u>	D	METAL Calcium.	D->N:Disease
ITE <u>30</u>	D	T b	0.0	88 <u>3b5q B</u>	precipitant metal <u>CA MG NA</u> compound <u>CSN</u>	DQTH	METAL Calcium.	D->H:Disease
ITE <u>31</u>	L	b	0.0	88 <u>3b5q B</u>		LQMVG		
ITE <u>32</u>	G	b	0.0	<u> 883b5q_B</u>		GDRANE		G->S:Disease
ITE <u>33</u>	Y	Тb	17.3	82 <u>3b5q B</u>	precipitant homo	WVYFIETAGLSRDKP		
ITE <u>34</u>	G	T e	23.7	8 <u>3b5q_B</u>	precipitant	GSNVIPDHMARQELKFT		
	NTE 27 NTE 28 NTE 28 NTE 29 NTE 30 NTE 31 NTE 32 NTE 33 NTE 34	HTE 27 F HTE 28 A HTE 29 F HTE 30 D HTE 31 L HTE 32 G HTE 33 Y HTE 34 G	$ifTE \underline{27}$ F E b $iTTE \underline{28}$ A E b $iTTE \underline{29}$ I T t $iTTE \underline{30}$ D T b $iTTE \underline{31}$ L b $iTTE \underline{32}$ G b $iTTE \underline{33}$ Y T $iTTE \underline{34}$ G T	iff $\underline{27}$ F E b 0.5 iff $\underline{28}$ A E b 0.0 iff $\underline{29}$ I T b 0.6 iff $\underline{30}$ D T b 0.6 iff $\underline{31}$ L b 0.0 iff $\underline{32}$ G b 0.0 iff $\underline{33}$ Y T b 0.0 iff $\underline{33}$ Y T b 17.3 iff $\underline{34}$ G T e 23.7	ITE 27 F E b 0.5 $33b5q$ B ITE 28 A E b 0.0 $33b5q$ B ITE 29 I T b 0.6 $33b5q$ B ITE 29 I T b 0.6 $33b5q$ B ITE 29 I T b 0.0 $33b5q$ B ITE 30 D T b 0.0 $33b5q$ B ITE 31 L b 0.0 $33b5q$ B ITE 32 G b 0.0 $33b5q$ B ITE 33 Y T b 17.3 $33b5q$ B ITE 34 G T e 23.7 $33b5q$ B	iff 27 F E b 0.5 1000 (1000)	ITT 27 F E b 0.5 \$\$\vee{33b5q_B}\$ Import ITT 28 A E b 0.0 \$\$\$\$\vee{33b5q_B}\$ ATVML ITT 29 P T b 0.6 \$	Ime 27 F E b 0.5 \$\frac{23}{355q}B\$ Ime Ime

SITE をクリックすると特定のサイトのまとめのページが表示される

(1) 埋もれている部位(溶媒露出度accが 小さい部位)に変異が入ると、天然構造が 不安定になり、機能を失活しやすい。 (2) 相同タンパク質群で観察されるアミノ酸の割合(observed aa)が大 きい(よく観察される)アミノ酸に変異した場合、機能への影響は小さい。 逆に、稀にしか観察されないアミノ酸に変異した場合は、機能を失いや すい。SIFT scoreなど多くのプログラムがこの原理に基づく。

😂 HOMCOS:

🙋 HOMCOS(prot_sch_... ×

Summary for the 29-th Site(D)

HOMCOS:	•								
		Summary for the 29-th Site(D)	▲ 部位の						
PID QueryLen	gth FocusSite	TITLE							
9107 507	29 D	RecName: Full=Arylsulfatase A; Short=ASA; EC=3.1.6.8;AltName: Full=Cerebroside-sulfatase;Contains: RecName: Full=Arylsulfatase A component B;Contains: RecName: Full=Arylsulfatase A component C;Flags: Precursor;	キレめ						
UniProt Inform	ation		みこり						
AC/ID	AC: <u>P15289</u>	ID:ARSA_HUMAN							
Feature Table for 29-th site	METAL: Ca VARIANT: dbSNP:rs19 STRAND: { VAR SEQ: CHAIN: Ar CHAIN: Ar	Ilcium. D -> N (in MLD; infantile-onset; causes a severe reduction of enzyme activity; 9476346). {ECO:0000269 PubMed: <u>15326627</u> }. /FTId=VAR_054165. ECO:0000244 PDB:1AUK}. Missing (in isoform 2). {ECO:0000303 PubMed: <u>14702039</u> }. /FTId=VSP_046190. ylsulfatase A component B. /FTId=PRO_0000033418. ylsulfatase A. /FTId=PRO_0000033417.	(ARSA) D→Nの変異は、						
VARIANT for 29-th site	D->N Disea	se <u>dbSNP:rs199476346</u> Leukodystrophy metachromatic (MLD) [MIM: <u>250100]</u>	metachromatic(MLD)						
Evolutionary In	formation		「リソソーム病(異染性白質ジ						
Percentage of A	mino Acids ir	1 Homologous Protein	フトロフィー)」という病気と関						
D:100%		 29番目のDの進化的保存は極めてよい(100%)							
3D Structure In	formation		連かある。						
Template For M	lonomer predi	cted SecStr predicted ExpBur Predicted Relative Acc(%)	10 C C C C C C C C C C C C C C C C C C C						
<u>883b5q</u>	Т (Н	bond turn) b (buried) 0.6							
3D Complex Inf	formation								
Predicted Bind N	Molecules								
precipitant:2 me	etal:41 compo	und:2							
Templates for 31	D complexes								
precipitant [SO	04] 80 <u>1hdh A</u>	$\frac{1 \text{ D } 1}{1 \text{ D } 1} \bigotimes_{1 \text{ hdh } B} \frac{1 \text{ I } 1}{1 \text{ metal } [\text{NA}]} \bigotimes_{2 \text{ edd}} \frac{3 \text{ edd} \text{ A } 1 \text{ G } 1}{2 \text{ G } 2 \text{ edd}} \frac{3 \text{ edd} \text{ A } 1 \text{ G } 1}{4 \text{ G } 4 \text{ edd}} \frac{3 \text{ edd} \text{ C } 1 \text{ Q } 1}{2 \text{ edd}} \bigotimes_{1 \text{ edd}} \frac{3 \text{ edd} \text{ C } 1 \text{ Q } 1}{2 \text{ edd}} \bigotimes_{1 \text{ edd}} \frac{3 \text{ edd} \text{ C } 1 \text{ Q } 1}{2 \text{ edd}} \bigotimes_{1 \text{ edd}} \frac{3 \text{ edd} \text{ edd} \text{ C } 1 \text{ Q } 1}{2 \text{ edd}} \bigotimes_{1 \text{ edd}} \frac{3 \text{ edd} \text{ edd} \text{ C } 1 \text{ Q } 1}{2 \text{ edd}} \bigotimes_{1 \text{ edd}} \frac{3 \text{ edd} \text{ edd} \text{ edd} \text{ edd} \text{ edd} \frac{3 \text{ edd} \text{ edd} \text{ edd} \frac{3 \text{ edd} \text{ edd} \text{ edd} \frac{3 \text{ edd} \text{ edd} \frac{3 \text{ edd} 1}{2 \text{ edd}} \bigotimes_{1 \text{ edd}} \frac{3 \text{ edd} 1}{2 \text{ edd}} \bigotimes_{1 \text{ edd}} \frac{3 \text{ edd} 1}{2 \text{ edd}} \bigotimes_{1 \text{ edd}} \frac{3 \text{ edd} 1}{2 \text{ edd}} \otimes_{1 \text{ edd}} \bigotimes_{1 \text{ edd}} \frac{3 \text{ edd} 1}{2 \text{ edd}} \otimes_{1 \text{ edd}} \otimes_{1 \text{ edd}} \bigotimes_{1 \text{ edd}} \sum_{1 \text{ edd}} \sum$							
$\begin{array}{c} 3eu + D & 1 & 1 \\ 1auk & A & 8 & C & 8 \end{array}$	1e3c A 1	C 1 \textcircled{M} A 1 C 1 \textcircled{M} C 2 \textcircled{M} A 1 C 1 \textcircled{M} C 1 \textcircled{M} A 3 C 3 \textcircled{M} C 2 B 2 \textcircled{M}	カルシウムイオン						
<u>1e1z A 1 C 1</u>	88 <u>1e2s A 1</u>	B 1 🛱 1auk A 2 C 2 🛱 1e33 A 2 C 2 🛱 1e3c A 2 C 2 🛱 1auk A 5 C 5	(Ca ²⁺)との複合体構						
lauk A 7 C 7	[CA Section 12]	<u>B 1 J 1</u> 4miv <u>B 1 O 1</u> 121 <u>A 1 D 1</u> 111 <u>B 1 H 1 C 1</u> 124 <u>H H X B 1 H 1</u>	生が予測されている						
$\frac{41d_1 B 1 I 1}{1n2k A 1 D 1}$	\mathbb{Z} 4fdj B 1 I 1 巡 1n21 ネ 2 D 2 巡 4miv D 1 Z 1 巡 1hdh B 1 H 1 巡 4miv G 1 NA 1 巡 4miv A 1 I 1 巡 1 ア 沢 Cイレ くし る。 1n2k A 1 D 1 巡 4fdj A 1 E 1 巡 4fdj A 1 E 1 巡 4miv C 1 T 1 巡 4miv H 1 RA 1 巡 1n2k A 2 D 2 巡 4 miv E 1 E 4 1 ジ 4 miv E 1 D 1 ジ 4 miv A 1 D 1 ジ 4 miv A 1 C 1 miv H 1 RA 1 ジ 4 miv A 1 D 1								
4miv E I FA	<u>1</u> 😂 4 miv F . 2	I IA I Selitsu A I D I Select A I D I Compound [CSN] Selects A I D I	~						

29番目の部位に注目した Ca²⁺イオンータンパク質複合体の予測結合構造

ヘテロ多量体のモデリング(2本の配列から)

1) Googleで"HOMCOS"と入力

	— L <mark>·</mark>
(←) 3 t	https://www.google.co.jp/?gws_r 🔎 - 🔒 🖒 🛧 🌣
8 HOMCOS -	Google ×
Google	номсоз
	ウェブ 地図 画像 動画 ニュース もっと見る▼ 検索ツ
	約 120,000 件(0.25 秒)
	HOMCOS:相同複合体の検索・モデリングサーバ homcos.pdbj.org/?LANG=ja - HOMCOS(HOMology modeling of COmplex Structure)は、PDBに収納されて ・
<	· · · · · · · · · · · · · · · · · · ·

2)「ヘテロ多量体のモデル」を選ぶ

				×
←) 🖯 🧉	http://homcos.pdbj.org/?LANG	=ja	★ 🕯 ۵+۹	Ę
HOMCOS	:相同複合 ×			
	H D	IMEi		
	номсоя:相	同復合体の検索・モラ	デリングサーバ	
[Go to English p	age] 🏳 ALIK-2			
HOMCOS(HOM 司性から、構造オ ナている他の分	ology modeling of <u>CO</u> mplex Structure) は、 特知の分子ペアの構造を予測するためのサ 子を探索したり、PDB内の構造を鋳型にして	PDBに収納されてい ナーバです。アミノ酸酯 て複合体立体構造を引	る複合体の立体構造データを利用して、分子の類似性・相 2011や化学構造から、PDB内から複合体の立体構造が解 利することができます。 	3
サービス		クエリ(問い合わ せ)	說明]
結合分子の検	シンパク質に対する検索	アミノ酸配列	1本のアミノ酸語列をクエリとして、 それと類似したタンバク質と結合している分子を検索し ます	٦
索	~ 化合物に対する検索	化学構造	1つの化合物構造をクエリとして、 それと類似した化合物と結合しているタンパク質を検索 します	1
	1 ホモ多量体のモデル	アミノ酸配列	1本のアミノ酸配列をクエリとして、 そのホモ多量体の立体構造をホモロジーモデリングを用 いて予測します	1
複合体立体構 造の モデリング		2本のアミノ酸配 列	2本のアミノ酸語2列をクエリとして、 そのヘテロ多量体の立体構造をホモロジーモデリングに よって予測します	-
	→ 化合物タンパク質複合体のモデノ	ル アミノ酸配列と化 学構造	1本のアミノ酸語の化1つの化学構造をクエリとして、 その複合体の立体構造をホモロジーモデリングによって 予測します	
	38 201/0121			

3) タンパク質AのUNIPROT_IDにCDK5_HUMANを タンパク質BのUNIPROT_IDにCCNB1_HUMANを入力

CDK5_HUMAN: Cyclin-dependent proten kinase 5 **CCNB1_HUMAN** : G2/mitotic-specific cyclin B1

問い合わせ蛋白質の配列は以下の4通りで入力可 (i) PDB_ID+鎖 (ii) PDBファイルのアップロード <u>(iii) UniProt ID (</u>iv) アミノ酸配列

JMCOS://FU91	II ^ Ne Protein Mode		コ多量体のモデリング	
to English page]	<u></u>			
Dアミノ酸配列を	入力し、相同なタンパク質	1立体構造を鋳型として、ヘテロ多	量体の立体構造のモデリン	ノグを行います。
				the second se
酸配列は、[PDB	3_ID]+[鎮識別子], PDB5	ファイルのアップロード、UniProtの	DID、1文字表記のアミン酸	記列のどれかの <u>方法で入力して</u> ください
酸配列は、[PDI	3_ID]+[鎖識別子], PDBつ タンパク質 A PDB_ID:	ファイルのアップロード、UniProtの (1fin, 4hhb,) CHAIN_HD	DID、1文字表記のアミノ酸 ターパン質 B (A, B,) PDB_ID:	記列のどれかの方法 定入力してく ださい (1fin, 4hhb,) CHADi_ID: (A, B
酸配列は、[PDI ファイルのアッフ	8_ID]+{鎮識別子], PDBフ タンパク質 A PDB_ID: ローバ	ファイルのアップロード、UniProtの (1fin, 4hhb,) <u>CHAIN_HD</u> 参照	DD、1文字表記のアミノ酸 <u>タッパナラ質 B</u> (A, B,) PDB_ID:	記列のどれかの方法 で入力し(ください (1fin, 4hhb,) CHADY_ID: (A, B
酸配列は、[PDI ファイルのアッフ rot ID	B_ID]+{鎮識別子], PDBフ タンパク質 A PDB_ID: CDK5_HUMAN	ファイルのアップロード、UniProtの (1fin, 4hbb,) <u>CHAIN-ID</u> 参照 (CDK5_HUMAN,)	DID. 1文字表記のアミノ酸 ケードナク頁 B (A, B,) PDB_ID CCNB1_HUMAN	記列のとれかの方法 定入力に(ください) (1fin, 4hhb,) CHADLED: (A, B (CCNB1_HUMAN,)
酸配列は、[PDI ファイルのアッフ rot ID	3_ID]+(鏡徽別子), PDBフ タンパク質 A PDB_ID: ローーー CDK5_HUMAN	マァイルのアップロード、UniProtの (Ifin, 4hhb,) <u>CHAIN_IB</u> (CDK5_HUMAN,)	DID. 1文字表記のアミノ酸 ターパーク質 B (A, B,) PDB_ID (CCNB1_HUMAN	R列のとれかの方法 定入力に(ください) (1fin, 4hhb,) CHADED: (A, B CCNB1_HUMAN,)
酸配列は、[PDI ファイルのアッフ rot ID	3_ID]+(鏡徽引子). PDBフ (ケンパク質 A PDB_ID: COK5_HUMAN	ファイルのアップロード、UniProtの (Ifin, 4hhb,) <u>CHAIN-IB</u> (CDK5_HUMAN,)	DD. 1文字表記のアミノ酸 (A, B,) PDB_ID (CNB1_HUMAN	R列のどれかの方法 定入力に(ください (1fin, 4hhb,) CHADEID: (A, B (CCNB1_HUMAN,)
酸配列は、[PD] ファイルのアッフ rot ID (酸配列)	3_ID]+(鏡識別子), PDBフ (ケンパク質 A PDB_ID: CDK5_HUMAN	ファイルのアップロード、UniProtの (Ifin, 4hhb,) <u>CHAIN-IB</u> (CDK5_HUMAN,)	DD. 1文字表記のアミノ酸 <u>タンパン質</u> B (A, B,) PDB_ID [CCN81_HUMAN	R列のどれかの方法 定入力に(ください) (1fin, 4hhb,) CHADEID: (A, B (CCNB1_HUMAN,)
酸配列は、[PDJ ファイルのアッフ rot ID /酸配列	3_ID]+(鏡識別子), PDBフ (ケンパク質 A PDB_ID: CDK5_HUMAN	ファイルのアップロード、UniProtの (Ifin, 4hbb,) <u>CHAIN-IB</u> (CDK5_HUMAN,)	DD. 1文字表記のアミノ酸 <u>タンパン質</u> B (A, B,) PDB_ID [CCN81_HUMAN	R列のどれかの方法 定入力に(ください (1fin, 4hhb,) CHADEID: (A, B (CCNB1_HUMAN,)

MODE Modellerによる二量体のモデリング(Win8)[1]

HOMCOSのヘテロ多量体モデリングで、CDK5_HUMANとCCNB1_HUMANを入力し、適当な鋳型構造を選んで、以下のモデル3D構造のウィンドウが表示されたとする。

(3)スクリプトファイル (model_complex.py)、アラインメントファイル(alignment_complex.ali), 鋳型構造のファイル(1h27_A_1_B_1.pdb)の三つを自分のパソコンにダウンロードする。 今回は、C:¥Users¥guest01¥Downloadsというディレクトリに保存することにする。

MODE Modellerによる二量体のモデリング(Win8)[3]

LLER guest01¥Download<mark>s</mark>>dir ドライン C のボリューム ラベルは OS です ボリューム シリアル番号は BEE2-DA99 です

C:¥Users¥guest01¥DownToads のディレクトリ

2015/06/10	15:20		1,137	model_complex.py
2015/06/10	15:21		1,274	alignment_complex.ali
2015/06/10	15:21		363,949	1h27_A_1_B_1.pdb
2015/06/10	15:21	<dir></dir>		
2015/06/10	15:21	<dir></dir>		

(8)コマンドdirを入力すると、現在のディレクト リにあるファイルの一覧が表示される。ダウン ロードした三つのファイルがあることを確認。

C:¥Users¥gu ドライブ C ボリューム	est01¥Do のボリョ シリアル	wnload <mark>s</mark> > ューム ラ レ番号は「	dir ∽yµ(a O BEE2-DA9	S です 9 です
C:¥Users¥g	uest01¥D	lown I oads	のディレ	·クトリ
2015/06/10 2015/06/10 2015/06/10 2015/06/10	15:25 15:25 15:21 15:21	<dir> <dir></dir></dir>	363,949	1h27_A_1_B_1.pdb alignment complex ali
2015/06/10 2015/06/10 2015/06/10 2015/06/10	15:25 15:20 15:25		49,786 1,137 344,579	model_complex.log model_complex.py query_complex.B99990001.pdb

2015/06/10

2015/06/10

2015/06/10 15:24

15:24

15:24

C:¥Users¥guest01¥Download<mark>s</mark>>mod9.14 model_complex.py 'import site' failed; use -v for traceback

(9) コマンドmod9.14 [スクリプトファイル] を入力し、Modellerを実行する。今回は、 mod9.14 model_complex.py と入力する。この後、計算終了までには 1分~数分程度の時間がかかる。

(10)計算終了後、再びコマンドdirを入力すると、出力ファイルの一 覧が表示される。このうち、query_complex.B99990001.pdbが 予測構造のPDBファイルである。このファイルをChimeraなどで開き 、予測構造を確認する。

20,930 query_complex.D00000001 344,455 query_complex.ini

3,805,818 query_complex.rsr

3,704 query_complex.sch 267.108 query_complex.V99990001

ヘテロ多量体のモデリング(2つの単量体構造から)

2)「ヘテロ多量体のモデル」を選ぶ

1) Googleで"HOMCOS"と入力

		- 🗆 👗
	(⇐)	G=ja ♠ ★ ✿
$\langle \langle \langle \rangle \rangle$ 8 https://www.google.co.jp/?gws_r $\rho \neq \hat{\bullet} \circ$ $\hat{\bullet} \neq \hat{\bullet}$	⊘ HOMCOS:相同複合×	
8 HOMCOS - Google ×	H D	INCOS ^
Google Homcos	HOMCOS : #	目同復合体の検索・モデリングサーバ
	[Go to English page] 🦓 ヘルプページ	
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	HOMCOS(<u>HOM</u> ology modeling of <u>CO</u> mplex Structure) [1 同性から、構造未知の分子ペアの構造を予測するための (ナている他の分子を探索したり、PDB内の構造を鋳型(こ)	t、PDBに収納されている複合体の立体構造データを利用して、分子の類似性・相 サーバです。アミノ酸配列や化学構造から、PDB内から複合体の立体構造が解 て複合体立体構造を予測することができます。
	サービス	クエリ(問い合わ 送明
HOMCOS: 相同復合体の検索・モテリンクサーバ homcos.pdbj.org/?LANG=ja +	ないでのか シンパク質に対する検索	
HOMCOS(HOMology modeling of COmplex Structure) は、PDBに収納されて	時日分子の検 索 化合物に対する検索	
	ホモ多量体のモデル	1本のアミノ酸酒びりをクエリとして、 アミノ酸酒びり そのホモる量体の立体構造をホモロジーモデリングを用 いて予想します
	複合体立体構 造の モデリング	2本のアミノ酸酸2 2本のアミノ酸酸2 列 シーンデータン酸2 2本のアラン酸酸2 2 2本のアラン酸2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
② HOMCOS: ヘテロ多量 ×	へ 化合物タンパク質複合体のモラ	・ エル アミー酸酸びいと化 その「探合体の立体構造をホモロジーモデリングによって ※300 ます
HOMCOS:ヘテロ多量体のモデリング	LastUpdate of PDB:20150121	
[Go to English page]	■ いパク哲AのDDR ID	LANS CHAIN IDLA
アミノ酸配列は、[PDB_ID]+[鎖識別子]、PDBファイルのアップロード、UniProtのID、1文字表記のアミノ酸配列のとれかの方法で入力してく	ネンパク質BのPDB_ID)に 2b9r , CHAIN_IDに A を入力
PDB PDB_ID: 4au8 (fin, 4hbb,) CHAIN_ID: A (A, B,) PDB_ID: 2b9r (fin, 4hbt,) CHAIN_ID: A A, B,) PDBファイルのアップロート		pendent proten kinase 5
UniProt ID (CDK5_HUMAN,) (CCNB1_HUMAN,)		
	2b9rA : G2/mitoti	c-specific cyclin B1
アミノ酸酯の列		
	問い合わせ蛋白質の	の配列は以下の4通りで入力す
Reset values SEARCH		
	🔍 (iii) UniProt ID (iv	/) アミノ酸配列

化合物タンパク質複合体モデリング

1) Googleで"HOMCOS"と入力

		×
(←) ③ ⑧	https://www.google.co.jp/?gws_r 🔎 - 🔒 🖒 🛧	•
8 HOMCOS	- Google ×	
Google	HOMCCS	
	ウェブ 地図 画像 動画 ニュース もっと見る▼ 検	素ツ
	約 120,000 件 (0.25 秒)	
	HOMCOS:相同複合体の検索・モデリングサーバ homcos.pdbj.org/?LANG=ja マ HOMCOS(HOMology modeling of COmplex Structure) は、PDBに収納されて	· •
<		>

[Go to English page] ロヘルブページ

1本のアミノ酸配列と1つの化合物構造を入力し、類似した複合体立体構造を鋳型として、化合物-タンパク質液合体の立体構造のモデリングを行います。

アミノ酸配列は、[PDB_ID]+[鎖識別子]、PDBファイルのアップロード、UniProtのID、1文字表記のア ミノ酸配列、のどれかの方法で入力してください。化合物は、PDBの3文字表記の入力,SMILES文字 列を入力、化合物のファイル(SDF, MOL, MOL2, PDB)のアップロード、の3つのどれかの方法で入力 してください。

2)「化合物タンパク質複合体のモデル」を選ぶ

🕘 HOMCOS	:相同複合 ×		
	HD	IMEi	3 56
	HOMCOS:相	同復合体の検索・モラ	ドリングサーバ
[Go to English p	agel Pauza-2		
HOMCOS(HOM	ology modeling of <u>COmplex Structure</u>) [].	PDBに収納されてい	5複合体の立体構造データを利用して、分子の類似性・相
可圧から、構造> けている他の分	FAUの分子へアの構造を予測するにのの。 子を探索したり、PDB内の構造を鋳型にし	ケーハです。アミノ酸酮 て複合体立体構造を予	別で化子構造から、PDB内から狭合14の立14構造が解 5測することができます。
(beeu //Blusche	ור
サービス		シェリ(同い合わせ)	說明月
サービス 結合分子の検	金子タンパク質に対する検索	ジェリ(ia)い言わ せ) アミノ酸配列	説明 1本のアミノ酸植列をクエリとして、 それと類似したタンバク質と結合している分子を検索し ます
サービス 結合 分子の検 索	シンジ質に対する検索 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ジェリ(すい)合わ ゼ) アミノ酸酸 びの マミノ酸 びの レージ 構造	説明 1本のアミノ酸値で列をクエリとして、 それと類似したタンパク質と結合している分子を検索し ます 1つの化合物構造をクエリとして、 それと類似した化合物と結合しているタンパク質を検索 します
サービス 結合分子の検 索	シンパジ質に対する検索 ・	シェリハロハモロ セ) アミノ酸植びり 化学構造 アミノ酸植びり	説明 1本のアミノ酸値であたクエリとして、 それと類似したタンパク質と結合している分子を検索し ます 1つの化合物構造をクエリとして、 それと類似した化合物と結合しているタンパク質を検索 します 1本のアミノ酸値の原クエリとして、 そのホモ多量体の立体構造をホモロジーモデリングを用 いて予測します
サービス 結合分子の検 索 換合体立体構 モデリング	シンパジ質に対する検索 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	シェリ(に)(187) セ) アミノ酸酸(201) 化学構造 アミノ酸酸(201) 2本のアミノ酸酸(201) 2本のアミノ酸酸(201)	説明 1本のアミノ酸塩200Eクエリとして、 それと類似したタンパク質と結合している分子を検索し ます 1つの化合物構造をクエリとして、 それと類似した化合物と結合しているタンパク質を検索 します 1本のアミノ酸塩200Eクエリとして、 そのホモ多量体の立体構造をホモロジーモデリングを用 いて予測します 2本のアミノ酸塩200立体構造をホモロジーモデリングに まって予測します

3) PROTEINのUNIPROT_IDにはCDK3_HUMANを COMPOUNDのPDB three letter ligand codeにはIREを入力

Iressa/Gefitinib (IRE)

