「EM Navigator」と 「Yorodumi(万見)」で 3次元構造を眺める

鈴木博文 大阪大学 蛋白質研究所・PDBj

ライフサイエンス・データベース講習会 2010-08-10 名古屋大学

- ・「EM Navigator」と「万見(Yorodumi)」というウェ ブサイトの紹介
- これらのウェブサイトを使って、生体分子・組織の「3次元 構造を眺めること」を体験
- •想定する聴衆: 生体分子構造研究の経験がない・少ないユーザー

※時間の都合で、講習内容を一部省略する可能性が あります。ご了承ください。

EM Navigatorを開いてみる

EM Navigator を開く

手順:キーワード「em navigator」でWeb検索 または、PDBjトップページの左フレーム、 「検索」の中の「EM Navigator」をクリック

EM Navigator IMI PDBj > W EM Navigator データを見る 詳しく	3次	元電子顕微鏡データナビゲーター [English] / 日本語]
• さがす : (キーワード / EMDB ID / PDB ID) 🔍 • 眺める : 🗃 ギャラリー (三リスト)画表		実行
ムービースロット 再生 月生	方向 シャッフル	¢>
<u>[::]EMDB-5128</u> ▶ 92	[EEMDB-1020 ▶ ¥	
情報	(
EM Navigatorとは? ・ 生体分子や生体組織の3次元電子顕微鏡データ を、気軽にわかりやすく眺めるためのウェブサイトです。 ・ EMDB と PDB のデータを利用しています(統計情報) ・ 分子・構造生物学の専門家にも、初心者や専門外 のかたにも利用していただけるサイトを目指しています。 ・ PDBjが運営しています。 ② 詳しくはこちら	お知らせ ・ 2010-07-28: 新規公開デー ジェー ジェー ・ 2010-07-21: 新規公開デー	-9 -9 -9

EM Navigatorとは?

解説1:

「3次元電子顕微鏡」とは?

電子顕微鏡ってなに?

電子顕微鏡(電顕・EM) 透過型電子顕微鏡(「影絵」を見るタイプ) 分子・原子レベルの分解能・定量性

「生命のカラクリ」を直接見たい!

→ 生命現象の担い手(生体組織・生体分子)は とても小さい

→「光」では見ることができない (分解能は100nm程度) →「電子線」なら原子も見える (原理的には1Åよりも高分解能)

「光」を「電子線」におきかえた顕微鏡: 電子顕微鏡(<u>Electron Microscopy: EM</u>)

3次元電子顕微鏡とは?

電子顕微鏡写真の問題点

- ・ノイズが強い
- ・2次元(3次元で見たい!)

その対策(画像解析などのコンピュータ処理)

- ・「電子線トモグラフィー」
- ・「単粒子解析」

など

これらの総称が、3次元電子顕微鏡(3D-EM)

欠点:分解能が低い

「3次元化」と「ノイズ低減」で分解能が犠牲 原子モデル作成は難しい

利点:「生き生きとした」姿を見ることができる 試料調整のハードルが低い(一般に) コンピュータの中での「抽出・精製」も可能 大きな試料が得意

X線結晶学・NMRとは真逆で相補的

「生き生きとした」構造

EMDB-1233 PDB-2ix8

電子顕微鏡: 光の代わりに電子を使った顕微鏡

3次元電子顕微鏡:

電子顕微鏡像から3次元構造を得る手法

欠点と利点: 分解能は低いが、 「生き生きとした」構造を見ることができる

3次元電子顕微鏡と データベース

データベースの中の3次元電子顕微鏡構造

EM Data Bank (EMDB) 877 件

Protein Data Bank 66,828 件

PDB と EMDB

PDBでは原子座標が主データ(必須) →多くの3次元電子顕微鏡データは対象外

2002年に欧州のEBIがEM Data Bank(EMDB)を設立 (現在は米国RCSB・NCMIとともに運営)

EMDBでは「3次元マップ」が主データ PDBと同様、試料や実験条件などの付随情報も

3次元マップってなに?

- ・3次元空間の中の密度(濃い・薄い)の分布
- カタチを表しているのではない 形状は平行6面体(多くは立方体)で、 その中に「濃い」部分と「薄い」部分がある

• X線結晶学での「電子密度マップ」に相当 「電子密度」ではなく「静電ポテンシャル」に関係 ただし、この違いが意味をもつことは少ない

50 Å

半透明のグレーの図(ソリッド図): ノイズが強いデータで利用 色の濃さで密度を表現

当数値面図(等高面図): 色は、左が断面の「密度」、 右はある点・直線・面からの距離を表現

EMDBと PDB のデータ登録数の推移

分解能と注目度の関係

やっぱり原子モデルがほしい

高分解能(~4 A以上)の場合 原子モデルの直接構築が可能 (アミノ酸配列・立体化学などの情報を利用)

低分解能の場合 既知の原子モデルを使えば、限定的に可能 (原子モデルのあてはめ)

PDBには、両タイプのデータが登録されている

ハイブリッド構造解析とデータベース

- EMDBは3次元電子顕微鏡データのデータベース
- PDBの主データが原子座標であるのに対し、
 EMDBの主データは、「3次元マップ」
- 登録数は増加傾向、低分解能でも注目すべき データもある
- 低分解能データでも、ハイブリッドな手法で、原子 モデルの構築が可能

PDBとEMDBのデータを見てみる

PDBのデータを見てみる

手順: トップページ上部の入力ボックスにIDを入力 IDの例: 3gzu, 1brdなど

EM Navigato	DIF 国詳細ページ - PDB-3gzu	3次元電子顕微鏡テータナヒゲーター [<u>English</u>] / 日本語]	
VP7 recoated rotavirus DLP 手法: 電子顕微鏡 / 3.8Å分解能			
	こ エントリ情報		
<u>کار ۲</u> -۲-۱۷ Jmol	データベース名・ID	PORTEIN DATA BANK (PDB) / 3gzu	
	タイトル	VP7 recoated rotavirus DLP	
	記述子	Inner capsid protein VP2, Intermediate capsid protein VP6	
	著者	Chen, J.Z., Settembre, E.C., Harrison, S.C., Grigorieff, N.	
	画像	*** **	
▲ 表: 個別 すべて		●前 ○トップ ○左 ○	
シントリ情報	キーワード	র্ VIRUS, ব্বিrotavirus, ব্বিVP7, ব্বিVP6, ব্বিVP2, ব্বি7RP, ব্বিDLP, ব্ব Capsid protein, ব্ব Metal-binding, ব্বে Virion, ব্বিZinc, ব্বিCore protein, ব্বিRNA-binding, ব্রে Icosaderal virus,	
◎ 構成要素 △ 試料 ▲ 電子顕微鏡	関連するエントリ (1次引 用)		

PDB-3gzuの詳細ページ

PDBのデータを見てみる

・ページ右側:詳細情報

PDBjMineの詳細ページと同じ趣旨だが、 独特の付随情報(解析手法など)を表示 関連するエントリを画像付きで表示 (電子顕微鏡データの事情)

EMDBのデータを見る

手順1: トップページ→入力ボックスに IDを入力 IDの例: 1155, 1542, 1604

チェック

ページ全体
 PDBデータのページとほぼ同じ

 ムービー
 クリックで再生、スライダーでシーク、回転・断面表示など
 「ムービー」の画像クリックで、ムービーの種類が切り替わる

 ムービーにはいくつかの種類がある
 グレーの半透明のもの、単色・グラデーションの表面図、
 原子モデルとの重ね合わせ

EMDB-1155

EMDB-1542

EMDB-1604 ²⁶

体験3:

ファージ尾部の構造変化を見る

目的:ムービーで構造を比較してみる

バクテリオファージDNAの注入

ムービーページ:

詳細ページよりも高解像度のムービーが見られる 他のエントリのムービーとの比較も可能

手順1:EMDB-1267の詳細ページで、ページ右上部の「ムービーページ」というリンクをクリック→ムービーページが開かれる
手順2:ページ下部、ムービーの追加パネル、関連するデータの[1268]ボタンをクリック→箱の中に画像が出てくる
手順3:カラフルな方をクリック→新しいムービーが出てくる
手順4:ページ左側のコントロールパネルで、見る方向を選択し、観察

ファージ尾部の構造変化

チェック

・ムービー

ムービーの操作パネルでは、再生や一時停止のほかに、見る方向や、ムー ビーのサイズを操作できる

・ファージ尾部の構造比較

外から見てもよく分からないが、上から見たり断面を見たりすると、中心部分の 構造変化がよく分かる

万見(Yorodumi)とは?

「万見」ってなに?

- •「3次元構造を見る」ことを主題としたサイト
- 複雑な構造やそのデータの意味を、簡単な操作でわかりやすく、見たり知ったりできるページを目指した

(特に電子顕微鏡データは複雑なので)

PDBとEMDBのほとんどの構造を見られる

類似するサイトとの違い

・豊富な機能

(多くの機能を詰め込むためのユーザーインターフェース)

多数のパネル・自由なレイアウト マウス操作でウインドウのように移動・表示・非表示が可能

類似するサイトとの違い

データベースの付随情報と連動 (アミノ酸配列・基質結合部位情報など)

アミノ酸配列で選択

PDB-3icj

34

集合体構造を簡単に表示

Biological assembly (生物学的集合体)等の集合体構造

非対称単位

5量体

完全な正20面体 対称構造

PDB-2iz8: ウイルスキャプシド

実習4:

「万見」を使ってみる

手順: 入力ボックスにIDを入力し、エンターキーを押さずに 「万見(構造ビューア)」のリンクをクリック IDの例: 5039, 2iz8

「万見」を使ってみる

ウイルスの細胞侵入の メカニズムを見る

目的:EMDBとPDBのデータを見比べる

ウイルスと受容体の構造解析

ポリオウイルスの例

EMDB-1562 万見

万見

を押す

原子モデルとの重ね 合わせのムービー **EM** Navigator

→ Nectin-like protein (受容体) が選択される

41

コクサッキーウイルスの例

EMDB-1562 EM Navigator

完全な正20面体集合体を表示し、受容体を選択42

タバコモザイクウイルス(TMV)の RNAの配置を見る

TMVのらせん対称集合体の構造

- 「万見」でPDB-2tmvを開く →TMVの非対称単位の構造が表示される

- データパネル・集合体・1-らせん集合体のボタンを押す →らせん集合体の構造が表示される
- スタイルパネル・選択・「タンパク質」ボタンを押し、
 色・紫色のボタンを押し、
 透明度のスライダーをいちばん右へ移動
 →タンパク質部分が半透明の紫色になる
- スタイルパネル・選択・DNA/RNAを押し、 原子・「空間充填」ボタンを押し、 色・虹色・「グループ」ボタンを押す →RNAが目立つ
- 選択リセットボタンを押し、選択状態をリセット

TMVのらせん対称集合体の構造

チェック

- ・らせん対称性をもった集合体の構造
- TMVのRNAの配置を見る

PDBjの「今月の分子」の「タバコモザイク ウイルス」のページ参照 http://eprots.pdbj.org/mom/m om109_ja.html

F1-ATPaseのADP結合部位を見る

手順

- 「万見」でPDB-1h8eを開く →F1-ATPaseの構造が表示される

- 機能部位パネル・中心ボタンを押し、いずれかのADPの結合部位のボタンを押す

→ADP結合部位が選択され、中心に移動する

- 表示パネル・ズームスライダーと断面スライダーを調節し、結合部 位がよく見えるようにする

- スタイルパネル・チェーン・「カートゥーンとB&S」ボタンを押す →結合部位の側鎖が表示される
- ダブルクリックで任意の原子間の距離を測定する、など

F1-ATPaseのADP結合部位

EM Navigator の解説ページ

「万見画廊」ページ

「万見」のさまざまな表示例を掲載

モダンなブラウザ

Internet Explorer 7以上、Firefox 2以上、 Opera 10以上、Safari 5以上、Google Chrome

モダンなハードウェア

ネットブックでも十分利用可能だが、 グラフィック性能の高いPCが望ましい

ブラウザのプラグイン

Adobe Flash Player (Macromedia Flash) Java実行環境 (最近のWindows・Macでは、デフォルトで利用可能) ムービーじゃ不満? それなら・・・

セッションファイル と マップファイル をダウンロードして UCSF-Chimeraで開く

ムービーじゃ不満? それなら・・・

セッションファイル と マップファイル をダウンロードして UCSF-Chimeraで開く

