[English] 日本語
Yorodumi
- PDB-5gar: Thermus thermophilus V/A-ATPase, conformation 1 -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 5gar
TitleThermus thermophilus V/A-ATPase, conformation 1
Components
  • (V-type ATP synthase ...) x 6
  • Archaeal/vacuolar-type H+-ATPase subunit I
  • V-type ATPase subunit GV-ATPase
  • Vacuolar type ATP synthase subunit
KeywordsHYDROLASE / V/A-ATPase / V-ATPase / A-ATPase / Thermus thermophilus / rotary ATPase / membrane protein
Function / homology
Function and homology information


proton-transporting V-type ATPase, V0 domain / proton-transporting two-sector ATPase complex, catalytic domain / proton-transporting ATP synthase complex / proton motive force-driven plasma membrane ATP synthesis / H+-transporting two-sector ATPase / proton-transporting ATPase activity, rotational mechanism / proton-transporting ATP synthase activity, rotational mechanism / ATP binding / metal ion binding
Similarity search - Function
V-type ATP synthase subunit I, N-terminal / Vacuolar ATPase subunit I, N-terminal proximal lobe / Vacuolar ATPase Subunit I N-terminal proximal lobe / V-type ATPase subunit I, N-terminal domain / ATPase, V0 complex, c subunit / Vacuolar (H+)-ATPase G subunit / ATPase, V1 complex, subunit F, bacterial/archaeal / V-ATPase proteolipid subunit / ATPase, V0 complex, c/d subunit / V-type ATPase subunit C/d ...V-type ATP synthase subunit I, N-terminal / Vacuolar ATPase subunit I, N-terminal proximal lobe / Vacuolar ATPase Subunit I N-terminal proximal lobe / V-type ATPase subunit I, N-terminal domain / ATPase, V0 complex, c subunit / Vacuolar (H+)-ATPase G subunit / ATPase, V1 complex, subunit F, bacterial/archaeal / V-ATPase proteolipid subunit / ATPase, V0 complex, c/d subunit / V-type ATPase subunit C/d / V-type ATP synthase subunit c/d subunit superfamily / V-type ATP synthase c/d subunit, domain 3 superfamily / ATP synthase (C/AC39) subunit / V-type ATPase, V0 complex, 116kDa subunit family / V-type ATPase 116kDa subunit family / V-type ATPase subunit E / V-type ATPase subunit E, C-terminal domain superfamily / ATP synthase (E/31 kDa) subunit / ATPase, V1 complex, subunit D / ATPase, V1 complex, subunit F / ATPase, V1 complex, subunit F superfamily / ATP synthase subunit D / ATP synthase (F/14-kDa) subunit / V-type ATP synthase regulatory subunit B/beta / V-type ATP synthase catalytic alpha chain / ATPsynthase alpha/beta subunit, N-terminal extension / ATPsynthase alpha/beta subunit N-term extension / V-ATPase proteolipid subunit C-like domain / F/V-ATP synthase subunit C superfamily / ATP synthase subunit C / ATPase, F1/V1 complex, beta/alpha subunit, C-terminal / ATP synthase subunit alpha, N-terminal domain-like superfamily / ATPase, F1/V1/A1 complex, alpha/beta subunit, N-terminal domain superfamily / ATPase, F1/V1/A1 complex, alpha/beta subunit, N-terminal domain / ATP synthase alpha/beta family, beta-barrel domain / ATPase, alpha/beta subunit, nucleotide-binding domain, active site / ATP synthase alpha and beta subunits signature. / ATPase, F1/V1/A1 complex, alpha/beta subunit, nucleotide-binding domain / ATP synthase alpha/beta family, nucleotide-binding domain / P-loop containing nucleoside triphosphate hydrolase
Similarity search - Domain/homology
V-type ATP synthase subunit I / V-type ATP synthase subunit D / F0F1 ATP synthase subunit C / V-type ATP synthase subunit E / V-type ATP synthase subunit C / V-type ATP synthase subunit F / V-type ATP synthase alpha chain / V-type ATP synthase beta chain / V-type ATP synthase, subunit (VAPC-THERM) / V-type ATP synthase, subunit K ...V-type ATP synthase subunit I / V-type ATP synthase subunit D / F0F1 ATP synthase subunit C / V-type ATP synthase subunit E / V-type ATP synthase subunit C / V-type ATP synthase subunit F / V-type ATP synthase alpha chain / V-type ATP synthase beta chain / V-type ATP synthase, subunit (VAPC-THERM) / V-type ATP synthase, subunit K / V-type ATPase subunit / V-type ATP synthase beta chain / V-type ATP synthase subunit D
Similarity search - Component
Biological speciesThermus thermophilus (bacteria)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 6.4 Å
AuthorsSchep, D.G. / Zhao, J. / Rubinstein, J.L.
Funding support Canada, 1items
OrganizationGrant numberCountry
Canadian Institutes of Health Research (CIHR)MOP 81294 Canada
CitationJournal: Proc Natl Acad Sci U S A / Year: 2016
Title: Models for the a subunits of the Thermus thermophilus V/A-ATPase and Saccharomyces cerevisiae V-ATPase enzymes by cryo-EM and evolutionary covariance.
Authors: Daniel G Schep / Jianhua Zhao / John L Rubinstein /
Abstract: Rotary ATPases couple ATP synthesis or hydrolysis to proton translocation across a membrane. However, understanding proton translocation has been hampered by a lack of structural information for the ...Rotary ATPases couple ATP synthesis or hydrolysis to proton translocation across a membrane. However, understanding proton translocation has been hampered by a lack of structural information for the membrane-embedded a subunit. The V/A-ATPase from the eubacterium Thermus thermophilus is similar in structure to the eukaryotic V-ATPase but has a simpler subunit composition and functions in vivo to synthesize ATP rather than pump protons. We determined the T. thermophilus V/A-ATPase structure by cryo-EM at 6.4 Å resolution. Evolutionary covariance analysis allowed tracing of the a subunit sequence within the map, providing a complete model of the rotary ATPase. Comparing the membrane-embedded regions of the T. thermophilus V/A-ATPase and eukaryotic V-ATPase from Saccharomyces cerevisiae allowed identification of the α-helices that belong to the a subunit and revealed the existence of previously unknown subunits in the eukaryotic enzyme. Subsequent evolutionary covariance analysis enabled construction of a model of the a subunit in the S. cerevisae V-ATPase that explains numerous biochemical studies of that enzyme. Comparing the two a subunit structures determined here with a structure of the distantly related a subunit from the bovine F-type ATP synthase revealed a conserved pattern of residues, suggesting a common mechanism for proton transport in all rotary ATPases.
History
DepositionFeb 5, 2016Deposition site: RCSB / Processing site: RCSB
Revision 1.0Mar 9, 2016Provider: repository / Type: Initial release
Revision 1.1Mar 23, 2016Group: Database references
Revision 1.2May 25, 2016Group: Database references
Revision 1.3Jan 15, 2020Group: Author supporting evidence / Category: pdbx_audit_support / Item: _pdbx_audit_support.funding_organization
Revision 1.4Mar 6, 2024Group: Data collection / Database references / Category: chem_comp_atom / chem_comp_bond / database_2
Item: _database_2.pdbx_DOI / _database_2.pdbx_database_accession

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-8016
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: V-type ATP synthase alpha chain
B: V-type ATP synthase alpha chain
C: V-type ATP synthase alpha chain
D: V-type ATP synthase beta chain
E: V-type ATP synthase beta chain
F: V-type ATP synthase beta chain
G: V-type ATP synthase subunit E
H: V-type ATP synthase subunit E
I: V-type ATPase subunit G
J: V-type ATPase subunit G
K: V-type ATP synthase subunit D
L: V-type ATP synthase subunit F
M: V-type ATP synthase subunit C
N: Archaeal/vacuolar-type H+-ATPase subunit I
O: Vacuolar type ATP synthase subunit
P: Vacuolar type ATP synthase subunit
Q: Vacuolar type ATP synthase subunit
R: Vacuolar type ATP synthase subunit
S: Vacuolar type ATP synthase subunit
T: Vacuolar type ATP synthase subunit
U: Vacuolar type ATP synthase subunit
V: Vacuolar type ATP synthase subunit
W: Vacuolar type ATP synthase subunit
X: Vacuolar type ATP synthase subunit
Y: Vacuolar type ATP synthase subunit
Z: Vacuolar type ATP synthase subunit


Theoretical massNumber of molelcules
Total (without water)668,42426
Polymers668,42426
Non-polymers00
Water0
1


  • Idetical with deposited unit
  • defined by author
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

-
V-type ATP synthase ... , 6 types, 11 molecules ABCDEFGHKLM

#1: Protein V-type ATP synthase alpha chain / V-ATPase subunit A


Mass: 63628.902 Da / Num. of mol.: 3 / Source method: isolated from a natural source / Source: (natural) Thermus thermophilus (bacteria) / Strain: AH8
References: UniProt: Q56403, H+-transporting two-sector ATPase
#2: Protein V-type ATP synthase beta chain / V-ATPase subunit B


Mass: 50850.738 Da / Num. of mol.: 3 / Source method: isolated from a natural source / Source: (natural) Thermus thermophilus (bacteria) / Strain: AH8 / References: UniProt: Q72J73, UniProt: Q56404*PLUS
#3: Protein V-type ATP synthase subunit E / V-ATPase subunit E


Mass: 20481.418 Da / Num. of mol.: 2 / Source method: isolated from a natural source / Source: (natural) Thermus thermophilus (bacteria) / Strain: AH8 / References: UniProt: P74901
#5: Protein V-type ATP synthase subunit D / V-ATPase subunit D


Mass: 23350.973 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Thermus thermophilus (bacteria) / Strain: AH8 / References: UniProt: Q72J74, UniProt: O87880*PLUS
#6: Protein V-type ATP synthase subunit F / V-ATPase subunit F


Mass: 10824.321 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Thermus thermophilus (bacteria) / Strain: AH8 / References: UniProt: P74903
#7: Protein V-type ATP synthase subunit C / V-ATPase subunit C / subunit d


Mass: 35968.570 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Thermus thermophilus (bacteria) / Strain: AH8 / References: UniProt: P74902

-
Protein , 3 types, 15 molecules IJNOPQRSTUVWXYZ

#4: Protein V-type ATPase subunit G / V-ATPase


Mass: 11752.551 Da / Num. of mol.: 2 / Source method: isolated from a natural source / Source: (natural) Thermus thermophilus (bacteria) / Strain: AH8 / References: UniProt: Q72J66, UniProt: Q5SIT5*PLUS
#8: Protein Archaeal/vacuolar-type H+-ATPase subunit I / Subunit a


Mass: 72272.453 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Thermus thermophilus (bacteria) / Strain: AH8 / References: UniProt: H9ZQR4
#9: Protein
Vacuolar type ATP synthase subunit / Subunit c


Mass: 9841.714 Da / Num. of mol.: 12 / Source method: isolated from a natural source / Source: (natural) Thermus thermophilus (bacteria) / Strain: AH8 / References: UniProt: P74900, UniProt: Q5SIT7*PLUS

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Intact Thermus thermophilus V/A-ATPase / Type: COMPLEX / Entity ID: #1-#10 / Source: NATURAL
Source (natural)Organism: Thermus thermophilus (bacteria) / Strain: AH8
Buffer solutionpH: 8
SpecimenConc.: 7 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportDetails: Homemade nanofabricated 400 mesh copper/rhodium grid
Grid material: COPPER/RHODIUM / Grid mesh size: 400 divisions/in. / Grid type: Homemade nanofabricated
VitrificationInstrument: FEI VITROBOT MARK III / Cryogen name: ETHANE-PROPANE / Humidity: 100 % / Chamber temperature: 277 K
Details: Plunged into liquid ethane/propane (FEI VITROBOT MARK III).

-
Electron microscopy imaging

Experimental equipment
Model: Tecnai F20 / Image courtesy: FEI Company
MicroscopyModel: FEI TECNAI F20
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 200 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy / Calibrated magnification: 34483 X / Nominal defocus max: 6000 nm / Nominal defocus min: 1000 nm / Cs: 2 mm / C2 aperture diameter: 30 µm / Alignment procedure: COMA FREE
Specimen holderCryogen: NITROGEN
Specimen holder model: GATAN 626 SINGLE TILT LIQUID NITROGEN CRYO TRANSFER HOLDER
Image recordingAverage exposure time: 15 sec. / Electron dose: 35.7 e/Å2 / Detector mode: COUNTING / Film or detector model: GATAN K2 SUMMIT (4k x 4k) / Num. of grids imaged: 12
Image scansMovie frames/image: 30 / Used frames/image: 1-30

-
Processing

EM software
IDNameVersionCategory
1TMaCS1.2particle selection
4CTFFIND3CTF correction
7MDFFmodel fitting
9RELION1.3initial Euler assignment
10RELION1.3final Euler assignment
12RELION1.33D reconstruction
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
SymmetryPoint symmetry: C1 (asymmetric)
3D reconstructionResolution: 6.4 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 197178 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more