[English] 日本語
Yorodumi
- PDB-7xnn: human KCNQ1-CaM-ML277-PIP2 complex in state B -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7xnn
Titlehuman KCNQ1-CaM-ML277-PIP2 complex in state B
Components
  • Calmodulin-3
  • Potassium voltage-gated channel subfamily KQT member 1
KeywordsMEMBRANE PROTEIN / potassium voltage-gated channel / ML277 / PIP2
Function / homology
Function and homology information


gastrin-induced gastric acid secretion / corticosterone secretion / voltage-gated potassium channel activity involved in atrial cardiac muscle cell action potential repolarization / basolateral part of cell / lumenal side of membrane / negative regulation of voltage-gated potassium channel activity / rhythmic behavior / regulation of gastric acid secretion / stomach development / membrane repolarization during atrial cardiac muscle cell action potential ...gastrin-induced gastric acid secretion / corticosterone secretion / voltage-gated potassium channel activity involved in atrial cardiac muscle cell action potential repolarization / basolateral part of cell / lumenal side of membrane / negative regulation of voltage-gated potassium channel activity / rhythmic behavior / regulation of gastric acid secretion / stomach development / membrane repolarization during atrial cardiac muscle cell action potential / Phase 3 - rapid repolarisation / voltage-gated potassium channel activity involved in cardiac muscle cell action potential repolarization / membrane repolarization during action potential / membrane repolarization during ventricular cardiac muscle cell action potential / regulation of atrial cardiac muscle cell membrane repolarization / iodide transport / Phase 2 - plateau phase / potassium ion export across plasma membrane / membrane repolarization during cardiac muscle cell action potential / intracellular chloride ion homeostasis / renal sodium ion absorption / negative regulation of delayed rectifier potassium channel activity / voltage-gated potassium channel activity involved in ventricular cardiac muscle cell action potential repolarization / atrial cardiac muscle cell action potential / auditory receptor cell development / detection of mechanical stimulus involved in sensory perception of sound / regulation of membrane repolarization / delayed rectifier potassium channel activity / protein phosphatase 1 binding / positive regulation of potassium ion transmembrane transport / Voltage gated Potassium channels / outward rectifier potassium channel activity / potassium ion homeostasis / ventricular cardiac muscle cell action potential / non-motile cilium assembly / regulation of ventricular cardiac muscle cell membrane repolarization / intestinal absorption / regulation of heart contraction / negative regulation of high voltage-gated calcium channel activity / monoatomic ion channel complex / ciliary base / inner ear morphogenesis / negative regulation of calcium ion export across plasma membrane / regulation of cardiac muscle cell action potential / positive regulation of heart rate / cochlea development / renal absorption / adrenergic receptor signaling pathway / potassium ion import across plasma membrane / positive regulation of ryanodine-sensitive calcium-release channel activity / regulation of cell communication by electrical coupling involved in cardiac conduction / negative regulation of peptidyl-threonine phosphorylation / protein kinase A regulatory subunit binding / protein phosphatase activator activity / regulation of heart rate by cardiac conduction / voltage-gated potassium channel activity / protein kinase A catalytic subunit binding / inner ear development / social behavior / positive regulation of cyclic-nucleotide phosphodiesterase activity / positive regulation of phosphoprotein phosphatase activity / adenylate cyclase binding / catalytic complex / detection of calcium ion / negative regulation of ryanodine-sensitive calcium-release channel activity / regulation of cardiac muscle contraction / regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion / voltage-gated potassium channel complex / regulation of release of sequestered calcium ion into cytosol by sarcoplasmic reticulum / cellular response to cAMP / regulation of calcium-mediated signaling / positive regulation of protein dephosphorylation / titin binding / transport vesicle / positive regulation of cardiac muscle contraction / potassium ion transmembrane transport / positive regulation of protein autophosphorylation / cardiac muscle contraction / sperm midpiece / cellular response to epinephrine stimulus / calcium channel complex / phosphatidylinositol-4,5-bisphosphate binding / substantia nigra development / adenylate cyclase activator activity / regulation of heart rate / protein serine/threonine kinase activator activity / sarcomere / erythrocyte differentiation / positive regulation of peptidyl-threonine phosphorylation / regulation of cytokinesis / spindle microtubule / sensory perception of sound / response to insulin / cytoplasmic vesicle membrane / positive regulation of protein serine/threonine kinase activity / regulation of blood pressure / spindle pole / response to calcium ion / calcium-dependent protein binding / glucose metabolic process
Similarity search - Function
Potassium channel, voltage dependent, KCNQ1 / Potassium channel, voltage dependent, KCNQ / Potassium channel, voltage dependent, KCNQ, C-terminal / KCNQ voltage-gated potassium channel / Voltage-dependent channel domain superfamily / EF-hand domain pair / EF-hand, calcium binding motif / EF-Hand 1, calcium-binding site / EF-hand calcium-binding domain. / EF-hand calcium-binding domain profile. ...Potassium channel, voltage dependent, KCNQ1 / Potassium channel, voltage dependent, KCNQ / Potassium channel, voltage dependent, KCNQ, C-terminal / KCNQ voltage-gated potassium channel / Voltage-dependent channel domain superfamily / EF-hand domain pair / EF-hand, calcium binding motif / EF-Hand 1, calcium-binding site / EF-hand calcium-binding domain. / EF-hand calcium-binding domain profile. / EF-hand domain / Ion transport domain / Ion transport protein / EF-hand domain pair
Similarity search - Domain/homology
Chem-I0S / : / Chem-PIO / Calmodulin-3 / Potassium voltage-gated channel subfamily KQT member 1
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.5 Å
AuthorsMa, D. / Guo, J.
Funding support China, 6items
OrganizationGrant numberCountry
Ministry of Science and Technology (MoST, China)2020YFA0908501 China
Ministry of Science and Technology (MoST, China)2018YFA0508100 China
National Natural Science Foundation of China (NSFC)31870724 China
National Natural Science Foundation of China (NSFC)81800231 China
Other governmentLR19C050002
Other government2021FZZX001-28
CitationJournal: Proc Natl Acad Sci U S A / Year: 2022
Title: Structural mechanisms for the activation of human cardiac KCNQ1 channel by electro-mechanical coupling enhancers.
Authors: Demin Ma / Ling Zhong / Zhenzhen Yan / Jing Yao / Yan Zhang / Fan Ye / Yuan Huang / Dongwu Lai / Wei Yang / Panpan Hou / Jiangtao Guo /
Abstract: The cardiac KCNQ1 potassium channel carries the important current and controls the heart rhythm. Hundreds of mutations in KCNQ1 can cause life-threatening cardiac arrhythmia. Although KCNQ1 ...The cardiac KCNQ1 potassium channel carries the important current and controls the heart rhythm. Hundreds of mutations in KCNQ1 can cause life-threatening cardiac arrhythmia. Although KCNQ1 structures have been recently resolved, the structural basis for the dynamic electro-mechanical coupling, also known as the voltage sensor domain-pore domain (VSD-PD) coupling, remains largely unknown. In this study, utilizing two VSD-PD coupling enhancers, namely, the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP) and a small-molecule ML277, we determined 2.5-3.5 Å resolution cryo-electron microscopy structures of full-length human KCNQ1-calmodulin (CaM) complex in the apo closed, ML277-bound open, and ML277-PIP-bound open states. ML277 binds at the "elbow" pocket above the S4-S5 linker and directly induces an upward movement of the S4-S5 linker and the opening of the activation gate without affecting the C-terminal domain (CTD) of KCNQ1. PIP binds at the cleft between the VSD and the PD and brings a large structural rearrangement of the CTD together with the CaM to activate the PD. These findings not only elucidate the structural basis for the dynamic VSD-PD coupling process during KCNQ1 gating but also pave the way to develop new therapeutics for anti-arrhythmia.
History
DepositionApr 29, 2022Deposition site: PDBJ / Processing site: PDBJ
Revision 1.0Dec 14, 2022Provider: repository / Type: Initial release
Revision 1.1Feb 22, 2023Group: Database references / Category: citation / citation_author
Item: _citation.page_first / _citation.page_last ..._citation.page_first / _citation.page_last / _citation.pdbx_database_id_PubMed / _citation.title / _citation_author.identifier_ORCID

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Calmodulin-3
B: Potassium voltage-gated channel subfamily KQT member 1
C: Potassium voltage-gated channel subfamily KQT member 1
D: Calmodulin-3
E: Potassium voltage-gated channel subfamily KQT member 1
F: Calmodulin-3
G: Potassium voltage-gated channel subfamily KQT member 1
H: Calmodulin-3
hetero molecules


Theoretical massNumber of molelcules
Total (without water)389,44020
Polymers384,4118
Non-polymers5,02912
Water0
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein
Calmodulin-3 /


Mass: 19615.445 Da / Num. of mol.: 4
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: CALM3, CALML2, CAM3, CAMC, CAMIII / Production host: Homo sapiens (human) / References: UniProt: P0DP25
#2: Protein
Potassium voltage-gated channel subfamily KQT member 1 / IKs producing slow voltage-gated potassium channel subunit alpha KvLQT1 / KQT-like 1 / Voltage- ...IKs producing slow voltage-gated potassium channel subunit alpha KvLQT1 / KQT-like 1 / Voltage-gated potassium channel subunit Kv7.1


Mass: 76487.297 Da / Num. of mol.: 4
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: KCNQ1, KCNA8, KCNA9, KVLQT1 / Production host: Homo sapiens (human) / References: UniProt: P51787
#3: Chemical
ChemComp-K / POTASSIUM ION


Mass: 39.098 Da / Num. of mol.: 4 / Source method: obtained synthetically / Formula: K
#4: Chemical
ChemComp-I0S / (2R)-N-[4-(4-methoxyphenyl)-1,3-thiazol-2-yl]-1-(4-methylbenzene-1-sulfonyl)piperidine-2-carboxamide


Mass: 471.592 Da / Num. of mol.: 4 / Source method: obtained synthetically / Formula: C23H25N3O4S2
#5: Chemical
ChemComp-PIO / [(2R)-2-octanoyloxy-3-[oxidanyl-[(1R,2R,3S,4R,5R,6S)-2,3,6-tris(oxidanyl)-4,5-diphosphonooxy-cyclohexyl]oxy-phosphoryl]oxy-propyl] octanoate / dioctanoyl l-alpha-phosphatidyl-d-myo-inositol 4,5-diphosphate


Mass: 746.566 Da / Num. of mol.: 4 / Source method: obtained synthetically / Formula: C25H49O19P3
Has ligand of interestN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: human KCNQ1-CaM-ML277-PIP2 complex in state B / Type: ORGANELLE OR CELLULAR COMPONENT / Entity ID: #1-#2 / Source: RECOMBINANT
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Homo sapiens (human)
Buffer solutionpH: 8
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy / Nominal defocus max: -1300 nm / Nominal defocus min: -1100 nm
Image recordingElectron dose: 64 e/Å2 / Film or detector model: GATAN K2 SUMMIT (4k x 4k)

-
Processing

CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 2.5 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 257550 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more