[English] 日本語
Yorodumi
- PDB-7lzi: Structure of the glutamate receptor-like channel AtGLR3.4 -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7lzi
TitleStructure of the glutamate receptor-like channel AtGLR3.4
ComponentsGlutamate receptor 3.4
KeywordsTRANSPORT PROTEIN / Arabidopsis thaliana / Ion-Channel / glutamate receptor-like channel (GLR)
Function / homology
Function and homology information


cellular response to acetate / chloroplast membrane / glutamate receptor activity / cellular response to cold / plastid / ligand-gated monoatomic ion channel activity / chloroplast / calcium-mediated signaling / cellular response to amino acid stimulus / calcium channel activity ...cellular response to acetate / chloroplast membrane / glutamate receptor activity / cellular response to cold / plastid / ligand-gated monoatomic ion channel activity / chloroplast / calcium-mediated signaling / cellular response to amino acid stimulus / calcium channel activity / response to wounding / cellular response to mechanical stimulus / calcium ion transport / plasma membrane
Similarity search - Function
Ionotropic glutamate receptor, plant / Plant glutamate receptor, periplasmic ligand-binding domain / Bacterial extracellular solute-binding proteins, family 3 / Solute-binding protein family 3/N-terminal domain of MltF / : / Ligand-gated ion channel / Ionotropic glutamate receptor, L-glutamate and glycine-binding domain / Ligated ion channel L-glutamate- and glycine-binding site / Ionotropic glutamate receptor / Eukaryotic homologues of bacterial periplasmic substrate binding proteins. ...Ionotropic glutamate receptor, plant / Plant glutamate receptor, periplasmic ligand-binding domain / Bacterial extracellular solute-binding proteins, family 3 / Solute-binding protein family 3/N-terminal domain of MltF / : / Ligand-gated ion channel / Ionotropic glutamate receptor, L-glutamate and glycine-binding domain / Ligated ion channel L-glutamate- and glycine-binding site / Ionotropic glutamate receptor / Eukaryotic homologues of bacterial periplasmic substrate binding proteins. / Receptor, ligand binding region / Receptor family ligand binding region / Periplasmic binding protein-like I
Similarity search - Domain/homology
GLUTAMIC ACID / Glutamate receptor 3.4
Similarity search - Component
Biological speciesArabidopsis thaliana (thale cress)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 4.39 Å
AuthorsGangwar, S.P. / Green, M.N. / Sobolevsky, A.I.
Funding support United States, 4items
OrganizationGrant numberCountry
National Institutes of Health/National Cancer Institute (NIH/NCI)R01 CA206573 United States
National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS)R01 NS083660 United States
National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS)R01 NS107253 United States
National Science Foundation (NSF, United States)1818086 United States
CitationJournal: Mol Cell / Year: 2021
Title: Structure of the Arabidopsis thaliana glutamate receptor-like channel GLR3.4.
Authors: Marriah N Green / Shanti Pal Gangwar / Erwan Michard / Alexander A Simon / Maria Teresa Portes / Juan Barbosa-Caro / Michael M Wudick / Michael A Lizzio / Oleg Klykov / Maria V Yelshanskaya ...Authors: Marriah N Green / Shanti Pal Gangwar / Erwan Michard / Alexander A Simon / Maria Teresa Portes / Juan Barbosa-Caro / Michael M Wudick / Michael A Lizzio / Oleg Klykov / Maria V Yelshanskaya / José A Feijó / Alexander I Sobolevsky /
Abstract: Glutamate receptor-like channels (GLRs) play vital roles in various physiological processes in plants, such as wound response, stomatal aperture control, seed germination, root development, innate ...Glutamate receptor-like channels (GLRs) play vital roles in various physiological processes in plants, such as wound response, stomatal aperture control, seed germination, root development, innate immune response, pollen tube growth, and morphogenesis. Despite the importance of GLRs, knowledge about their molecular organization is limited. Here we use X-ray crystallography and single-particle cryo-EM to solve structures of the Arabidopsis thaliana GLR3.4. Our structures reveal the tetrameric assembly of GLR3.4 subunits into a three-layer domain architecture, reminiscent of animal ionotropic glutamate receptors (iGluRs). However, the non-swapped arrangement between layers of GLR3.4 domains, binding of glutathione through S-glutathionylation of cysteine C205 inside the amino-terminal domain clamshell, unique symmetry, inter-domain interfaces, and ligand specificity distinguish GLR3.4 from representatives of the iGluR family and suggest distinct features of the GLR gating mechanism. Our work elaborates on the principles of GLR architecture and symmetry and provides a molecular template for deciphering GLR-dependent signaling mechanisms in plants.
History
DepositionMar 9, 2021Deposition site: RCSB / Processing site: RCSB
Revision 1.0Jul 28, 2021Provider: repository / Type: Initial release
Revision 1.1Aug 18, 2021Group: Database references / Category: citation / database_2
Item: _citation.journal_volume / _citation.page_first ..._citation.journal_volume / _citation.page_first / _database_2.pdbx_DOI / _database_2.pdbx_database_accession

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-23607
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Glutamate receptor 3.4
B: Glutamate receptor 3.4
C: Glutamate receptor 3.4
D: Glutamate receptor 3.4
hetero molecules


Theoretical massNumber of molelcules
Total (without water)431,55612
Polymers429,2704
Non-polymers2,2868
Water0
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: gel filtration
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein
Glutamate receptor 3.4 / AtGLR3.4 / Glutamate receptor-like protein 3.4 / Ligand-gated ion channel 3.4


Mass: 107317.383 Da / Num. of mol.: 4
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Arabidopsis thaliana (thale cress) / Gene: GLR3.4, GLR4, GLUR3, At1g05200, YUP8H12.19 / Plasmid: BacMam / Cell line (production host): HEK293S-GnTi / Production host: Homo sapiens (human) / References: UniProt: Q8GXJ4
#2: Polysaccharide
2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 424.401 Da / Num. of mol.: 4
Source method: isolated from a genetically manipulated source
DescriptorTypeProgram
DGlcpNAcb1-4DGlcpNAcb1-ROHGlycam Condensed SequenceGMML 1.0
WURCS=2.0/1,2,1/[a2122h-1b_1-5_2*NCC/3=O]/1-1/a4-b1WURCSPDB2Glycan 1.1.0
[][D-1-deoxy-GlcpNAc]{[(4+1)][b-D-GlcpNAc]{}}LINUCSPDB-CARE
#3: Chemical
ChemComp-GLU / GLUTAMIC ACID / Glutamic acid


Type: L-peptide linking / Mass: 147.129 Da / Num. of mol.: 4 / Source method: obtained synthetically / Formula: C5H9NO4 / Feature type: SUBJECT OF INVESTIGATION
Has ligand of interestY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: GLR3.4 / Type: COMPLEX
Details: Map displaying ligand binding and trans-membrane domain
Entity ID: #1 / Source: RECOMBINANT
Molecular weightExperimental value: NO
Source (natural)Organism: Arabidopsis thaliana (thale cress)
Source (recombinant)Organism: Homo sapiens (human) / Cell: HEK293S-GnTi / Plasmid: BacMam
Buffer solutionpH: 8
Buffer component
IDConc.NameFormulaBuffer-ID
120 mMTrisC4H11NO31
2150 mMSodium ChlorideNaClSodium chloride1
30.05 %DigitoninC56H92O291
SpecimenConc.: 2.5 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Details: Protein extracted and reconstituted in a detergent micelle
Specimen supportGrid material: GOLD / Grid mesh size: 200 divisions/in. / Grid type: C-flat-1.2/1.3
VitrificationInstrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 277 K
Details: 1mM L-Glutamate was added to the purified protein and incubated on ice for 30 min before specimen preparation.

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy / Cs: 2.7 mm
Image recordingAverage exposure time: 2.5 sec. / Electron dose: 58 e/Å2 / Film or detector model: GATAN K3 (6k x 4k) / Num. of grids imaged: 2

-
Processing

EM software
IDNameVersionCategory
1RELION3.1particle selection
2Leginonimage acquisition
4GctfCTF correction
7Coot0.9.2model fitting
9PHENIXmodel refinement
11RELION3.1final Euler assignment
12RELION3.1classification
13RELION3.13D reconstruction
CTF correctionType: NONE
Particle selectionNum. of particles selected: 2161194
SymmetryPoint symmetry: C2 (2 fold cyclic)
3D reconstructionResolution: 4.39 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 174044 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more