[English] 日本語
Yorodumi
- PDB-7tdf: AtTPC1 D454N with 1 mM EDTA state I -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7tdf
TitleAtTPC1 D454N with 1 mM EDTA state I
ComponentsTwo pore calcium channel protein 1
KeywordsTRANSPORT PROTEIN / ion channel / voltage activation / VGIC
Function / homology
Function and homology information


regulation of jasmonic acid biosynthetic process / seed germination / regulation of stomatal movement / plant-type vacuole / vacuole / vacuolar membrane / monoatomic ion channel complex / voltage-gated calcium channel activity / calcium-mediated signaling / calcium ion transport ...regulation of jasmonic acid biosynthetic process / seed germination / regulation of stomatal movement / plant-type vacuole / vacuole / vacuolar membrane / monoatomic ion channel complex / voltage-gated calcium channel activity / calcium-mediated signaling / calcium ion transport / calcium ion binding / Golgi apparatus / identical protein binding / plasma membrane / cytosol
Similarity search - Function
Two pore calcium channel protein 1, plant / Voltage-dependent channel domain superfamily / EF-hand, calcium binding motif / EF-hand calcium-binding domain profile. / EF-hand domain / Ion transport domain / Ion transport protein / EF-hand domain pair
Similarity search - Domain/homology
Two pore calcium channel protein 1
Similarity search - Component
Biological speciesArabidopsis thaliana (thale cress)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.7 Å
AuthorsDickinson, M.S. / Stroud, R.M.
Funding support United States, 1items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)GM24485 United States
CitationJournal: Proc Natl Acad Sci U S A / Year: 2022
Title: Molecular basis of multistep voltage activation in plant two-pore channel 1.
Authors: Miles Sasha Dickinson / Jinping Lu / Meghna Gupta / Irene Marten / Rainer Hedrich / Robert M Stroud /
Abstract: Voltage-gated ion channels confer excitability to biological membranes, initiating and propagating electrical signals across large distances on short timescales. Membrane excitation requires channels ...Voltage-gated ion channels confer excitability to biological membranes, initiating and propagating electrical signals across large distances on short timescales. Membrane excitation requires channels that respond to changes in electric field and couple the transmembrane voltage to gating of a central pore. To address the mechanism of this process in a voltage-gated ion channel, we determined structures of the plant two-pore channel 1 at different stages along its activation coordinate. These high-resolution structures of activation intermediates, when compared with the resting-state structure, portray a mechanism in which the voltage-sensing domain undergoes dilation and in-membrane plane rotation about the gating charge-bearing helix, followed by charge translocation across the charge transfer seal. These structures, in concert with patch-clamp electrophysiology, show that residues in the pore mouth sense inhibitory Ca and are allosterically coupled to the voltage sensor. These conformational changes provide insight into the mechanism of voltage-sensor domain activation in which activation occurs vectorially over a series of elementary steps.
History
DepositionDec 31, 2021Deposition site: RCSB / Processing site: RCSB
Revision 1.0Feb 2, 2022Provider: repository / Type: Initial release
Revision 1.1Mar 9, 2022Group: Database references / Category: citation
Item: _citation.country / _citation.journal_abbrev ..._citation.country / _citation.journal_abbrev / _citation.journal_id_ASTM / _citation.journal_id_CSD / _citation.journal_id_ISSN / _citation.journal_volume / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-25827
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Two pore calcium channel protein 1
B: Two pore calcium channel protein 1


Theoretical massNumber of molelcules
Total (without water)169,8802
Polymers169,8802
Non-polymers00
Water0
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein Two pore calcium channel protein 1 / Calcium channel protein 1 / AtCCH1 / Fatty acid oxygenation up-regulated protein 2 / Voltage- ...Calcium channel protein 1 / AtCCH1 / Fatty acid oxygenation up-regulated protein 2 / Voltage-dependent calcium channel protein TPC1 / AtTPC1


Mass: 84939.844 Da / Num. of mol.: 2 / Mutation: D454N
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Arabidopsis thaliana (thale cress) / Gene: TPC1, CCH1, FOU2, At4g03560, F9H3.19, T5L23.5 / Production host: Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: Q94KI8

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: AtTPC1 D454N with 1 mM EDTA state I / Type: COMPLEX / Entity ID: all / Source: RECOMBINANT
Molecular weightValue: 0.168 MDa / Experimental value: NO
Source (natural)Organism: Arabidopsis thaliana (thale cress)
Source (recombinant)Organism: Saccharomyces cerevisiae (brewer's yeast)
Buffer solutionpH: 7.5
Details: 50 mM Tris, 200 mM NaCl, 0.06% glycodiosgenin, 1 mM EDTA
SpecimenConc.: 5 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportGrid material: GOLD / Grid mesh size: 300 divisions/in. / Grid type: Quantifoil R1.2/1.3
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: TFS KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy / Nominal magnification: 105000 X / Nominal defocus max: 1500 nm / Nominal defocus min: 800 nm / Cs: 2.7 mm / C2 aperture diameter: 50 µm / Alignment procedure: COMA FREE
Specimen holderCryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER
Image recordingElectron dose: 66 e/Å2 / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k)
EM imaging opticsEnergyfilter name: GIF Bioquantum / Energyfilter slit width: 20 eV

-
Processing

Software
NameVersionClassification
phenix.real_space_refine1.19.2_4158refinement
PHENIX1.19.2_4158refinement
EM softwareName: SerialEM / Version: 3.8 / Category: image acquisition / Details: stable
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
SymmetryPoint symmetry: C2 (2 fold cyclic)
3D reconstructionResolution: 2.7 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 129676 / Symmetry type: POINT
Atomic model buildingProtocol: FLEXIBLE FIT
RefinementCross valid method: NONE
Stereochemistry target values: GeoStd + Monomer Library + CDL v1.2
Displacement parametersBiso mean: 52.44 Å2
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.006110032
ELECTRON MICROSCOPYf_angle_d0.743413638
ELECTRON MICROSCOPYf_chiral_restr0.04561552
ELECTRON MICROSCOPYf_plane_restr0.00841668
ELECTRON MICROSCOPYf_dihedral_angle_d12.56043516

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more