[English] 日本語
Yorodumi
- PDB-7sl3: Full-length insulin receptor bound with site 2 binding deficient ... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7sl3
TitleFull-length insulin receptor bound with site 2 binding deficient mutant insulin (A-L13R) -- symmetric conformation
Components
  • Insulin A chain
  • Insulin B chain
  • Insulin receptor
KeywordsSIGNALING PROTEIN/HORMONE / insulin receptor / site 1 binding deficient mutant insulin / SIGNALING PROTEIN / SIGNALING PROTEIN-HORMONE complex
Function / homology
Function and homology information


Signaling by Insulin receptor / Insulin receptor recycling / yolk / IRS activation / Insulin receptor signalling cascade / Signal attenuation / 3-phosphoinositide-dependent protein kinase binding / positive regulation of glycoprotein biosynthetic process / lipoic acid binding / regulation of hydrogen peroxide metabolic process ...Signaling by Insulin receptor / Insulin receptor recycling / yolk / IRS activation / Insulin receptor signalling cascade / Signal attenuation / 3-phosphoinositide-dependent protein kinase binding / positive regulation of glycoprotein biosynthetic process / lipoic acid binding / regulation of hydrogen peroxide metabolic process / regulation of female gonad development / positive regulation of meiotic cell cycle / PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling / positive regulation of developmental growth / insulin-like growth factor II binding / male sex determination / exocrine pancreas development / insulin receptor complex / insulin-like growth factor I binding / insulin receptor activity / nuclear lumen / positive regulation of protein-containing complex disassembly / cargo receptor activity / dendritic spine maintenance / PTB domain binding / insulin binding / negative regulation of NAD(P)H oxidase activity / neuronal cell body membrane / adrenal gland development / negative regulation of glycogen catabolic process / regulation of cellular amino acid metabolic process / Signaling by Insulin receptor / IRS activation / nitric oxide-cGMP-mediated signaling / Insulin processing / negative regulation of fatty acid metabolic process / negative regulation of feeding behavior / regulation of protein secretion / amyloid-beta clearance / positive regulation of peptide hormone secretion / positive regulation of respiratory burst / Regulation of gene expression in beta cells / regulation of embryonic development / positive regulation of receptor internalization / negative regulation of acute inflammatory response / alpha-beta T cell activation / negative regulation of respiratory burst involved in inflammatory response / insulin receptor substrate binding / positive regulation of dendritic spine maintenance / Synthesis, secretion, and deacylation of Ghrelin / epidermis development / positive regulation of glycogen biosynthetic process / negative regulation of protein secretion / Signal attenuation / FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes / response to tumor necrosis factor / negative regulation of gluconeogenesis / positive regulation of nitric oxide mediated signal transduction / fatty acid homeostasis / regulation of protein localization to plasma membrane / phosphatidylinositol 3-kinase binding / COPI-mediated anterograde transport / negative regulation of lipid catabolic process / positive regulation of lipid biosynthetic process / negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway / heart morphogenesis / positive regulation of insulin receptor signaling pathway / positive regulation of phosphorylation / negative regulation of reactive oxygen species biosynthetic process / transport vesicle / positive regulation of protein autophosphorylation / dendrite membrane / Insulin receptor recycling / insulin-like growth factor receptor binding / NPAS4 regulates expression of target genes / positive regulation of protein metabolic process / neuron projection maintenance / positive regulation of brown fat cell differentiation / endoplasmic reticulum-Golgi intermediate compartment membrane / activation of protein kinase B activity / positive regulation of glycolytic process / response to nutrient levels / Insulin receptor signalling cascade / receptor-mediated endocytosis / positive regulation of mitotic nuclear division / negative regulation of protein phosphorylation / Regulation of insulin secretion / positive regulation of long-term synaptic potentiation / caveola / endosome lumen / positive regulation of cytokine production / acute-phase response / positive regulation of protein secretion / positive regulation of nitric-oxide synthase activity / regulation of transmembrane transporter activity / positive regulation of cell differentiation / positive regulation of glucose import / negative regulation of proteolysis / animal organ morphogenesis / regulation of synaptic plasticity
Similarity search - Function
Insulin receptor, trans-membrane domain / Insulin receptor trans-membrane segment / Tyrosine-protein kinase, insulin-like receptor / Tyrosine-protein kinase, receptor class II, conserved site / Receptor tyrosine kinase class II signature. / Insulin / Insulin family / Insulin/IGF/Relaxin family / Insulin, conserved site / Insulin family signature. ...Insulin receptor, trans-membrane domain / Insulin receptor trans-membrane segment / Tyrosine-protein kinase, insulin-like receptor / Tyrosine-protein kinase, receptor class II, conserved site / Receptor tyrosine kinase class II signature. / Insulin / Insulin family / Insulin/IGF/Relaxin family / Insulin, conserved site / Insulin family signature. / Insulin-like / Insulin / insulin-like growth factor / relaxin family. / Insulin-like superfamily / Receptor L-domain / Furin-like cysteine-rich domain / Receptor L-domain superfamily / Furin-like cysteine rich region / Receptor L domain / Furin-like repeat / Furin-like repeats / Growth factor receptor cysteine-rich domain superfamily / Fibronectin type III domain / Fibronectin type 3 domain / Fibronectin type-III domain profile. / Fibronectin type III / Fibronectin type III superfamily / Tyrosine-protein kinase, catalytic domain / Tyrosine kinase, catalytic domain / Tyrosine protein kinases specific active-site signature. / Tyrosine-protein kinase, active site / Protein tyrosine and serine/threonine kinase / Serine-threonine/tyrosine-protein kinase, catalytic domain / Protein kinase, ATP binding site / Protein kinases ATP-binding region signature. / Immunoglobulin-like fold / Protein kinase domain profile. / Protein kinase domain / Protein kinase-like domain superfamily
Similarity search - Domain/homology
Insulin / Insulin receptor
Similarity search - Component
Biological speciesMus musculus (house mouse)
Homo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.4 Å
AuthorsBai, X.C. / Choi, E.
Funding support United States, 1items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)R01GM136976 United States
CitationJournal: Nat Struct Mol Biol / Year: 2022
Title: Synergistic activation of the insulin receptor via two distinct sites.
Authors: Jie Li / Junhee Park / John P Mayer / Kristofor J Webb / Emiko Uchikawa / Jiayi Wu / Shun Liu / Xuewu Zhang / Michael H B Stowell / Eunhee Choi / Xiao-Chen Bai /
Abstract: Insulin receptor (IR) signaling controls multiple facets of animal physiology. Maximally four insulins bind to IR at two distinct sites, termed site-1 and site-2. However, the precise functional ...Insulin receptor (IR) signaling controls multiple facets of animal physiology. Maximally four insulins bind to IR at two distinct sites, termed site-1 and site-2. However, the precise functional roles of each binding event during IR activation remain unresolved. Here, we showed that IR incompletely saturated with insulin predominantly forms an asymmetric conformation and exhibits partial activation. IR with one insulin bound adopts a Γ-shaped conformation. IR with two insulins bound assumes a Ƭ-shaped conformation. One insulin binds at site-1 and another simultaneously contacts both site-1 and site-2 in the Ƭ-shaped IR dimer. We further show that concurrent binding of four insulins to sites-1 and -2 prevents the formation of asymmetric IR and promotes the T-shaped symmetric, fully active state. Collectively, our results demonstrate how the synergistic binding of multiple insulins promotes optimal IR activation.
History
DepositionOct 22, 2021Deposition site: RCSB / Processing site: RCSB
Revision 1.0Mar 30, 2022Provider: repository / Type: Initial release
Revision 1.1Apr 13, 2022Group: Database references / Category: citation / citation_author
Item: _citation.country / _citation.journal_abbrev ..._citation.country / _citation.journal_abbrev / _citation.journal_id_CSD / _citation.journal_id_ISSN / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year
Revision 1.2Apr 27, 2022Group: Database references / Category: citation / citation_author
Item: _citation.journal_volume / _citation.page_first ..._citation.journal_volume / _citation.page_first / _citation.page_last / _citation_author.identifier_ORCID

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Insulin receptor
B: Insulin receptor
C: Insulin B chain
D: Insulin B chain
E: Insulin A chain
F: Insulin A chain


Theoretical massNumber of molelcules
Total (without water)323,3046
Polymers323,3046
Non-polymers00
Water0
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: gel filtration
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein Insulin receptor / / IR


Mass: 155790.516 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Mus musculus (house mouse) / Gene: Insr / Production host: Homo sapiens (human)
References: UniProt: P15208, receptor protein-tyrosine kinase
#2: Protein/peptide Insulin B chain


Mass: 3433.953 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: INS / Production host: Homo sapiens (human) / References: UniProt: P01308
#3: Protein/peptide Insulin A chain


Mass: 2427.734 Da / Num. of mol.: 2 / Mutation: L13R
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: INS / Production host: Homo sapiens (human) / References: UniProt: P01308

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Full-length insulin receptor bound with site 2 binding deficient mutant insulin (A-L13R) -- symmetric conformation
Type: COMPLEX / Entity ID: all / Source: MULTIPLE SOURCES
Molecular weightExperimental value: NO
Buffer solutionpH: 8
SpecimenConc.: 6 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationInstrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE / Humidity: 100 %

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy / Nominal defocus max: 2600 nm / Nominal defocus min: 1600 nm
Image recordingElectron dose: 60 e/Å2 / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k)

-
Processing

EM software
IDNameVersionCategory
1RELIONparticle selection
2SerialEM3image acquisition
4GctfCTF correction
7Coot0.9model fitting
9PHENIX1.19model refinement
10RELIONinitial Euler assignment
11RELIONfinal Euler assignment
12RELIONclassification
13RELION3D reconstruction
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
Particle selectionNum. of particles selected: 1118695
SymmetryPoint symmetry: C2 (2 fold cyclic)
3D reconstructionResolution: 3.4 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 104877 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more