[English] 日本語
Yorodumi
- PDB-7b1d: Cryo-EM of Aedes Aegypti Toll5A -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7b1d
TitleCryo-EM of Aedes Aegypti Toll5A
ComponentsToll-like receptor
KeywordsIMMUNE SYSTEM / Mosquito vector biology / Toll receptor / LRR / Cystine knot domain
Function / homology
Function and homology information


toll-like receptor signaling pathway / transmembrane signaling receptor activity / immune response / membrane
Similarity search - Function
Toll-like receptor / TIR domain / Leucine-rich repeats, bacterial type / Toll - interleukin 1 - resistance / Leucine-rich repeat, SDS22-like subfamily / TIR domain profile. / Toll/interleukin-1 receptor homology (TIR) domain / Toll/interleukin-1 receptor homology (TIR) domain superfamily / Leucine rich repeat / Leucine-rich repeat, typical subtype ...Toll-like receptor / TIR domain / Leucine-rich repeats, bacterial type / Toll - interleukin 1 - resistance / Leucine-rich repeat, SDS22-like subfamily / TIR domain profile. / Toll/interleukin-1 receptor homology (TIR) domain / Toll/interleukin-1 receptor homology (TIR) domain superfamily / Leucine rich repeat / Leucine-rich repeat, typical subtype / Leucine-rich repeats, typical (most populated) subfamily / Leucine-rich repeat profile. / Leucine-rich repeat / Leucine-rich repeat domain superfamily
Similarity search - Domain/homology
TIR domain-containing protein
Similarity search - Component
Biological speciesAedes aegypti (yellow fever mosquito)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.41 Å
AuthorsGangloff, M. / Hardwick, S.W. / Chirgadze, D.Y.
Funding support United Kingdom, 1items
OrganizationGrant numberCountry
Medical Research Council (MRC, United Kingdom)MR/P02260X/1 United Kingdom
CitationJournal: Nat Commun / Year: 2022
Title: Structure and dynamics of Toll immunoreceptor activation in the mosquito Aedes aegypti.
Authors: Yoann Saucereau / Thomas H Wilson / Matthew C K Tang / Martin C Moncrieffe / Steven W Hardwick / Dimitri Y Chirgadze / Sandro G Soares / Maria Jose Marcaida / Nicholas J Gay / Monique Gangloff /
Abstract: Aedes aegypti has evolved to become an efficient vector for arboviruses but the mechanisms of host-pathogen tolerance are unknown. Immunoreceptor Toll and its ligand Spaetzle have undergone ...Aedes aegypti has evolved to become an efficient vector for arboviruses but the mechanisms of host-pathogen tolerance are unknown. Immunoreceptor Toll and its ligand Spaetzle have undergone duplication which may allow neofunctionalization and adaptation. Here we present cryo-EM structures and biophysical characterisation of low affinity Toll5A complexes that display transient but specific interactions with Spaetzle1C, forming asymmetric complexes, with only one ligand clearly resolved. Loop structures of Spaetzle1C and Toll5A intercalate, temporarily bridging the receptor C-termini to promote signalling. By contrast unbound receptors form head-to-head homodimers that keep the juxtamembrane regions far apart in an inactive conformation. Interestingly the transcriptional signature of Spaetzle1C differs from other Spaetzle cytokines and controls genes involved in innate immunity, metabolism and tissue regeneration. Taken together our results explain how upregulation of Spaetzle1C in the midgut and Toll5A in the salivary gland shape the concomitant immune response.
History
DepositionNov 24, 2020Deposition site: PDBE / Processing site: PDBE
Revision 1.0Jul 13, 2022Provider: repository / Type: Initial release
Revision 1.1Jan 25, 2023Group: Database references / Category: citation / citation_author
Item: _citation.country / _citation.journal_abbrev ..._citation.country / _citation.journal_abbrev / _citation.journal_id_CSD / _citation.journal_id_ISSN / _citation.journal_volume / _citation.page_first / _citation.page_last / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
B: Toll-like receptor
C: Toll-like receptor
hetero molecules


Theoretical massNumber of molelcules
Total (without water)177,93410
Polymers175,3522
Non-polymers2,5828
Water0
1


  • Idetical with deposited unit
  • defined by author&software
  • Evidence: cross-linking
TypeNameSymmetry operationNumber
identity operation1_5551
Buried area4770 Å2
ΔGint35 kcal/mol
Surface area69070 Å2
MethodPISA

-
Components

#1: Protein Toll-like receptor /


Mass: 87675.773 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Aedes aegypti (yellow fever mosquito) / Gene: 5569408 / Production host: Drosophila melanogaster (fruit fly) / References: UniProt: A0A6I8TEX2
#2: Polysaccharide
2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 424.401 Da / Num. of mol.: 4
Source method: isolated from a genetically manipulated source
DescriptorTypeProgram
DGlcpNAcb1-4DGlcpNAcb1-ROHGlycam Condensed SequenceGMML 1.0
WURCS=2.0/1,2,1/[a2122h-1b_1-5_2*NCC/3=O]/1-1/a4-b1WURCSPDB2Glycan 1.1.0
[][D-1-deoxy-GlcpNAc]{[(4+1)][b-D-GlcpNAc]{}}LINUCSPDB-CARE
#3: Sugar
ChemComp-NAG / 2-acetamido-2-deoxy-beta-D-glucopyranose / N-acetyl-beta-D-glucosamine / 2-acetamido-2-deoxy-beta-D-glucose / 2-acetamido-2-deoxy-D-glucose / 2-acetamido-2-deoxy-glucose / N-ACETYL-D-GLUCOSAMINE / N-Acetylglucosamine


Type: D-saccharide, beta linking / Mass: 221.208 Da / Num. of mol.: 4 / Source method: obtained synthetically / Formula: C8H15NO6
IdentifierTypeProgram
DGlcpNAcbCONDENSED IUPAC CARBOHYDRATE SYMBOLGMML 1.0
N-acetyl-b-D-glucopyranosamineCOMMON NAMEGMML 1.0
b-D-GlcpNAcIUPAC CARBOHYDRATE SYMBOLPDB-CARE 1.0
GlcNAcSNFG CARBOHYDRATE SYMBOLGMML 1.0
Has ligand of interestN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Toll5A-Spz1C complex / Type: COMPLEX / Entity ID: #1 / Source: RECOMBINANT
Molecular weightValue: 230 kDa/nm / Experimental value: YES
Source (natural)Organism: Aedes aegypti (yellow fever mosquito)
Source (recombinant)Organism: Drosophila melanogaster (fruit fly)
Buffer solutionpH: 7.5
Buffer component
IDConc.NameFormulaBuffer-ID
150 mMsodium chlorideNaClSodium chloride1
250 mMTris-HClTrisC4H11NO31
SpecimenConc.: 5 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportGrid material: COPPER / Grid mesh size: 300 divisions/in. / Grid type: Quantifoil R1.2/1.3
VitrificationInstrument: FEI VITROBOT MARK I / Cryogen name: ETHANE / Humidity: 95 % / Chamber temperature: 277 K / Details: Blotting force 0

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: TFS KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy / Nominal defocus max: 2700 nm / Nominal defocus min: 1000 nm / Cs: 2.7 mm / C2 aperture diameter: 50 µm / Alignment procedure: ZEMLIN TABLEAU
Specimen holderCryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER
Image recordingAverage exposure time: 2 sec. / Electron dose: 51.1 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

Software
NameVersionClassification
phenix.real_space_refine1.18.2_3874refinement
PHENIX1.18.2_3874refinement
EM software
IDNameCategory
2EPUimage acquisition
4WarpCTF correction
10cryoSPARCinitial Euler assignment
13cryoSPARC3D reconstruction
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
Particle selectionNum. of particles selected: 507268
3D reconstructionResolution: 3.41 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 85810 / Refinement type: OTHER / Symmetry type: POINT
RefinementCross valid method: NONE
Stereochemistry target values: GeoStd + Monomer Library + CDL v1.2
Displacement parametersBiso mean: 164.8 Å2
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.003811147
ELECTRON MICROSCOPYf_angle_d0.693415242
ELECTRON MICROSCOPYf_chiral_restr0.04611887
ELECTRON MICROSCOPYf_plane_restr0.00392004
ELECTRON MICROSCOPYf_dihedral_angle_d13.43723844

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more