[English] 日本語
Yorodumi
- EMDB-8345: Cryo-EM structure of the human 80S ribosome at 3.6 Angstrom resolution -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-8345
TitleCryo-EM structure of the human 80S ribosome at 3.6 Angstrom resolution
Map datahuman ribosome
Sample
  • Complex: Human ribosome (Jurkat)
Function / homology
Function and homology information


positive regulation of cysteine-type endopeptidase activity involved in execution phase of apoptosis / negative regulation of endoplasmic reticulum unfolded protein response / eukaryotic 80S initiation complex / oxidized pyrimidine DNA binding / response to TNF agonist / positive regulation of base-excision repair / negative regulation of protein neddylation / protein tyrosine kinase inhibitor activity / translation at presynapse / positive regulation of respiratory burst involved in inflammatory response ...positive regulation of cysteine-type endopeptidase activity involved in execution phase of apoptosis / negative regulation of endoplasmic reticulum unfolded protein response / eukaryotic 80S initiation complex / oxidized pyrimidine DNA binding / response to TNF agonist / positive regulation of base-excision repair / negative regulation of protein neddylation / protein tyrosine kinase inhibitor activity / translation at presynapse / positive regulation of respiratory burst involved in inflammatory response / axial mesoderm development / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage / positive regulation of gastrulation / negative regulation of formation of translation preinitiation complex / nucleolus organization / ribosomal protein import into nucleus / IRE1-RACK1-PP2A complex / : / exit from mitosis / positive regulation of endodeoxyribonuclease activity / positive regulation of Golgi to plasma membrane protein transport / 90S preribosome assembly / TNFR1-mediated ceramide production / laminin receptor activity / negative regulation of DNA repair / negative regulation of RNA splicing / optic nerve development / TORC2 complex binding / GAIT complex / negative regulation of intrinsic apoptotic signaling pathway in response to hydrogen peroxide / oxidized purine DNA binding / supercoiled DNA binding / neural crest cell differentiation / retinal ganglion cell axon guidance / middle ear morphogenesis / NF-kappaB complex / ubiquitin-like protein conjugating enzyme binding / regulation of establishment of cell polarity / negative regulation of phagocytosis / positive regulation of ubiquitin-protein transferase activity / Formation of the ternary complex, and subsequently, the 43S complex / rRNA modification in the nucleus and cytosol / erythrocyte homeostasis / cytoplasmic side of rough endoplasmic reticulum membrane / A band / regulation of G1 to G0 transition / alpha-beta T cell differentiation / pigmentation / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator / regulation of translation involved in cellular response to UV / protein kinase A binding / protein-DNA complex disassembly / positive regulation of DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediator / Ribosomal scanning and start codon recognition / negative regulation of ubiquitin protein ligase activity / ion channel inhibitor activity / Translation initiation complex formation / positive regulation of mitochondrial depolarization / response to aldosterone / G1 to G0 transition / homeostatic process / lung morphogenesis / negative regulation of Wnt signaling pathway / fibroblast growth factor binding / positive regulation of T cell receptor signaling pathway / positive regulation of activated T cell proliferation / regulation of cell division / Protein hydroxylation / male meiosis I / iron-sulfur cluster binding / macrophage chemotaxis / BH3 domain binding / mTORC1-mediated signalling / SARS-CoV-1 modulates host translation machinery / Peptide chain elongation / positive regulation of intrinsic apoptotic signaling pathway by p53 class mediator / Selenocysteine synthesis / monocyte chemotaxis / cysteine-type endopeptidase activator activity involved in apoptotic process / positive regulation of signal transduction by p53 class mediator / Formation of a pool of free 40S subunits / ubiquitin ligase inhibitor activity / positive regulation of cyclic-nucleotide phosphodiesterase activity / Eukaryotic Translation Termination / phagocytic cup / blastocyst development / endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / Response of EIF2AK4 (GCN2) to amino acid deficiency / SRP-dependent cotranslational protein targeting to membrane / negative regulation of respiratory burst involved in inflammatory response / Viral mRNA Translation / protein-RNA complex assembly / protein localization to nucleus / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / negative regulation of proteasomal ubiquitin-dependent protein catabolic process / GTP hydrolysis and joining of the 60S ribosomal subunit / TOR signaling / L13a-mediated translational silencing of Ceruloplasmin expression / Major pathway of rRNA processing in the nucleolus and cytosol / regulation of translational fidelity
Similarity search - Function
40S ribosomal protein SA / 40S ribosomal protein SA, C-terminal domain / 40S ribosomal protein SA C-terminus / Ribosomal protein L6, N-terminal / Ribosomal protein L6, N-terminal domain / Ribosomal protein L30e / Ribosomal protein L23 / Ubiquitin-like protein FUBI / Ribosomal protein L2, archaeal-type / Ribosomal protein L28e ...40S ribosomal protein SA / 40S ribosomal protein SA, C-terminal domain / 40S ribosomal protein SA C-terminus / Ribosomal protein L6, N-terminal / Ribosomal protein L6, N-terminal domain / Ribosomal protein L30e / Ribosomal protein L23 / Ubiquitin-like protein FUBI / Ribosomal protein L2, archaeal-type / Ribosomal protein L28e / Ribosomal L15/L27a, N-terminal / : / metallochaperone-like domain / Ribosomal L28e/Mak16 / Ribosomal L28e protein family / TRASH domain / Ribosomal protein S21e, conserved site / Ribosomal protein S26e / Ribosomal protein S26e superfamily / Ribosomal protein S19e, conserved site / Ribosomal protein S26e / Ribosomal protein L29e / Ribosomal protein S26e signature. / Ribosomal protein S2, eukaryotic / Ribosomal L29e protein family / Ribosomal protein S21e / Ribosomal protein S21e superfamily / Ribosomal protein S21e / : / Ribosomal protein S8e subdomain, eukaryotes / Ribosomal protein S21e signature. / Ribosomal protein S12e signature. / Ribosomal protein S2, eukaryotic/archaeal / Ribosomal protein S12e / Ribosomal protein S19e / Ribosomal_S19e / Ribosomal protein S5, eukaryotic/archaeal / Ribosomal protein S8e, conserved site / : / Ribosomal protein L24e, conserved site / Ribosomal protein S4e, N-terminal, conserved site / 40S ribosomal protein S4, C-terminal domain / Ribosomal protein S19e signature. / Small (40S) ribosomal subunit Asc1/RACK1 / Ribosomal protein S19e / Ribosomal protein L22e / Ribosomal protein L22e superfamily / Ribosomal protein L23/L25, N-terminal / Ribosomal L22e protein family / 40S ribosomal protein S4 C-terminus / Ribosomal protein S4e, N-terminal / Ribosomal protein L30e, conserved site / Ribosomal protein L34e, conserved site / Ribosomal protein S23, eukaryotic/archaeal / 40S Ribosomal protein S10 / S27a-like superfamily / Ribosomal protein L23, N-terminal domain / Ribosomal protein S10, eukaryotic/archaeal / Ribosomal protein L13e, conserved site / Ribosomal protein L13e signature. / Ribosomal protein S8e / Ribosomal protein S4, KOW domain / Ribosomal protein S4e / Ribosomal protein S4e, central region / Ribosomal protein L1, conserved site / Ribosomal protein S4e, central domain superfamily / Plectin/S10, N-terminal / Plectin/S10 domain / Ribosomal protein L38e / Ribosomal protein L38e superfamily / Ribosomal L38e protein family / Ribosomal Protein L6, KOW domain / Ribosomal protein L30/YlxQ / Ribosomal protein S25 / S25 ribosomal protein / RS4NT (NUC023) domain / Ribosomal protein L1 signature. / : / Ribosomal protein L13e / Ribosomal protein L13e / Ribosomal protein S17e, conserved site / Ribosomal protein S17e signature. / Ribosomal protein S27a / Ribosomal protein S27a / Ribosomal protein S27a / Ribosomal protein L1 / Ribosomal protein L14e domain / 60S ribosomal protein L6E / Ribosomal protein S30 / Ribosomal protein S30 / Ribosomal protein L34Ae / 40S ribosomal protein S29/30S ribosomal protein S14 type Z / Ribosomal protein L27e, conserved site / Ribosomal protein L27e signature. / Ribosomal protein L44e signature. / Ribosomal family S4e / Ribosomal protein S7e signature. / Ribosomal protein L10e, conserved site / Ribosomal protein L10e signature. / Ribosomal protein L32e, conserved site
Similarity search - Domain/homology
Small ribosomal subunit protein eS17 / Small ribosomal subunit protein uS2 / Small ribosomal subunit protein uS5 / Large ribosomal subunit protein eL33 / Large ribosomal subunit protein uL30 / Large ribosomal subunit protein uL22 / Small ribosomal subunit protein uS3 / Small ribosomal subunit protein eS12 / Large ribosomal subunit protein eL13 / Large ribosomal subunit protein uL6 ...Small ribosomal subunit protein eS17 / Small ribosomal subunit protein uS2 / Small ribosomal subunit protein uS5 / Large ribosomal subunit protein eL33 / Large ribosomal subunit protein uL30 / Large ribosomal subunit protein uL22 / Small ribosomal subunit protein uS3 / Small ribosomal subunit protein eS12 / Large ribosomal subunit protein eL13 / Large ribosomal subunit protein uL6 / Large ribosomal subunit protein eL22 / Large ribosomal subunit protein uL4 / Small ribosomal subunit protein eS19 / Large ribosomal subunit protein uL3 / Large ribosomal subunit protein uL13 / Small ribosomal subunit protein eS27 / Large ribosomal subunit protein uL29 / Large ribosomal subunit protein uL15 / Large ribosomal subunit protein uL18 / Large ribosomal subunit protein eL21 / Large ribosomal subunit protein eL28 / Small ribosomal subunit protein uS4 / Small ribosomal subunit protein uS7 / Small ribosomal subunit protein eS10 / Large ribosomal subunit protein eL29 / Large ribosomal subunit protein eL34 / Large ribosomal subunit protein eL14 / Small ribosomal subunit protein uS10 / Small ribosomal subunit protein eS1 / Large ribosomal subunit protein uL24 / Large ribosomal subunit protein eL15 / Large ribosomal subunit protein eL27 / Large ribosomal subunit protein eL43 / Large ribosomal subunit protein eL37 / Small ribosomal subunit protein eS7 / Small ribosomal subunit protein eS8 / Small ribosomal subunit protein uS8 / Small ribosomal subunit protein uS9 / Small ribosomal subunit protein uS11 / Small ribosomal subunit protein uS12 / Small ribosomal subunit protein uS13 / Small ribosomal subunit protein uS14 / Small ribosomal subunit protein uS15 / Small ribosomal subunit protein uS17 / Large ribosomal subunit protein eL8 / Small ribosomal subunit protein eS4, X isoform / Large ribosomal subunit protein uL23 / Small ribosomal subunit protein eS6 / Large ribosomal subunit protein uL14 / Small ribosomal subunit protein uS19 / Small ribosomal subunit protein eS24 / Small ribosomal subunit protein eS25 / Small ribosomal subunit protein eS26 / Small ribosomal subunit protein eS28 / Ubiquitin-like FUBI-ribosomal protein eS30 fusion protein / Large ribosomal subunit protein eL30 / Large ribosomal subunit protein eL39 / Large ribosomal subunit protein eL31 / Large ribosomal subunit protein uL1 / Large ribosomal subunit protein eL32 / Large ribosomal subunit protein uL5 / Large ribosomal subunit protein uL2 / Ubiquitin-ribosomal protein eS31 fusion protein / Ubiquitin-ribosomal protein eL40 fusion protein / Large ribosomal subunit protein eL38 / Small ribosomal subunit protein eS21 / Small ribosomal subunit protein RACK1 / Large ribosomal subunit protein eL24 / Large ribosomal subunit protein eL42 / Large ribosomal subunit protein eL19 / Large ribosomal subunit protein eL20 / Large ribosomal subunit protein eL6 / Large ribosomal subunit protein eL18 / Ribosomal protein uL16-like / Large ribosomal subunit protein eL36
Similarity search - Component
Biological speciesHomo sapiens (human)
Methodsingle particle reconstruction / cryo EM / Resolution: 3.6 Å
AuthorsZhang X / Lai M / Zhou ZH
Funding support United States, 6 items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)GM071940 United States
National Institutes of Health/National Institute of Dental and Craniofacial Research (NIH/NIDCR)DE025567 United States
National Institutes of Health/National Institute Of Allergy and Infectious Diseases (NIH/NIAID)AI094386 United States
National Institutes of Health/Office of the Director1S10OD018111 United States
National Institutes of Health/National Center for Research Resources (NIH/NCRR)1S10RR23057 United States
National Science Foundation (NSF, United States)DBI-338135 United States
CitationJournal: Nat Commun / Year: 2016
Title: Structures and stabilization of kinetoplastid-specific split rRNAs revealed by comparing leishmanial and human ribosomes.
Authors: Xing Zhang / Mason Lai / Winston Chang / Iris Yu / Ke Ding / Jan Mrazek / Hwee L Ng / Otto O Yang / Dmitri A Maslov / Z Hong Zhou /
Abstract: The recent success in ribosome structure determination by cryoEM has opened the door to defining structural differences between ribosomes of pathogenic organisms and humans and to understand ribosome- ...The recent success in ribosome structure determination by cryoEM has opened the door to defining structural differences between ribosomes of pathogenic organisms and humans and to understand ribosome-targeting antibiotics. Here, by direct electron-counting cryoEM, we have determined the structures of the Leishmania donovani and human ribosomes at 2.9 Å and 3.6 Å, respectively. Our structure of the leishmanial ribosome elucidates the organization of the six fragments of its large subunit rRNA (as opposed to a single 28S rRNA in most eukaryotes, including humans) and reveals atomic details of a unique 20 amino acid extension of the uL13 protein that pins down the ends of three of the rRNA fragments. The structure also fashions many large rRNA expansion segments. Direct comparison of our human and leishmanial ribosome structures at the decoding A-site sheds light on how the bacterial ribosome-targeting drug paromomycin selectively inhibits the eukaryotic L. donovani, but not human, ribosome.
History
DepositionAug 23, 2016-
Header (metadata) releaseOct 26, 2016-
Map releaseOct 26, 2016-
UpdateDec 25, 2019-
Current statusDec 25, 2019Processing site: RCSB / Status: Released

-
Structure visualization

Movie
  • Surface view with section colored by density value
  • Surface level: 0.03
  • Imaged by UCSF Chimera
  • Download
  • Surface view colored by height
  • Surface level: 0.03
  • Imaged by UCSF Chimera
  • Download
  • Surface view with fitted model
  • Atomic models: PDB-5t2c
  • Surface level: 0.03
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerEM map:
SurfViewMolmilJmol/JSmol
Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_8345.map.gz / Format: CCP4 / Size: 163.6 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
Annotationhuman ribosome
Voxel sizeX=Y=Z: 1.07 Å
Density
Contour LevelBy AUTHOR: 0.03 / Movie #1: 0.03
Minimum - Maximum-0.052417886 - 0.1269776
Average (Standard dev.)-0.00022137313 (±0.008379684)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions350350350
Spacing350350350
CellA=B=C: 374.50003 Å
α=β=γ: 90.0 °

CCP4 map header:

modeImage stored as Reals
Å/pix. X/Y/Z1.071.071.07
M x/y/z350350350
origin x/y/z0.0000.0000.000
length x/y/z374.500374.500374.500
α/β/γ90.00090.00090.000
start NX/NY/NZ000
NX/NY/NZ281156
MAP C/R/S123
start NC/NR/NS000
NC/NR/NS350350350
D min/max/mean-0.0520.127-0.000

-
Supplemental data

-
Sample components

-
Entire : Human ribosome (Jurkat)

EntireName: Human ribosome (Jurkat)
Components
  • Complex: Human ribosome (Jurkat)

-
Supramolecule #1: Human ribosome (Jurkat)

SupramoleculeName: Human ribosome (Jurkat) / type: complex / ID: 1 / Parent: 0
Source (natural)Organism: Homo sapiens (human) / Cell: Jurkat

-
Experimental details

-
Structure determination

Methodcryo EM
Processingsingle particle reconstruction
Aggregation stateparticle

-
Sample preparation

BufferpH: 7.6
VitrificationCryogen name: ETHANE / Chamber humidity: 100 %

-
Electron microscopy

MicroscopeFEI TITAN KRIOS
Electron beamAcceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
Electron opticsIllumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELDBright-field microscopy
Image recordingFilm or detector model: GATAN K2 SUMMIT (4k x 4k) / Detector mode: COUNTING / Average electron dose: 25.0 e/Å2
Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company

-
Image processing

CTF correctionSoftware - Name: CTFFIND
Startup modelType of model: EMDB MAP
EMDB ID:
Initial angle assignmentType: NOT APPLICABLE
Final angle assignmentType: OTHER
Final reconstructionResolution.type: BY AUTHOR / Resolution: 3.6 Å / Resolution method: FSC 0.143 CUT-OFF / Software - Name: RELION / Number images used: 175708

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more