[English] 日本語
Yorodumi
- EMDB-6549: Cryo-EM map of EF4-bound ribosomal complexe -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-6549
TitleCryo-EM map of EF4-bound ribosomal complexe
Map dataReconstruction of POST-EF4 complex
Sample
  • Sample: Reconstruction of POST-EF4 complex.
  • Complex: ribosome 70S
  • Protein or peptide: EF4
Keywordsribosome elongation / GTPase EF4 / tRNA back-translocation / P-loop
Function / homology
Function and homology information


: / response to pH / guanosine tetraphosphate binding / stringent response / ribosomal large subunit binding / mRNA base-pairing translational repressor activity / ornithine decarboxylase inhibitor activity / ribosomal small subunit binding / misfolded RNA binding / transcription antitermination factor activity, RNA binding ...: / response to pH / guanosine tetraphosphate binding / stringent response / ribosomal large subunit binding / mRNA base-pairing translational repressor activity / ornithine decarboxylase inhibitor activity / ribosomal small subunit binding / misfolded RNA binding / transcription antitermination factor activity, RNA binding / Group I intron splicing / RNA folding / transcriptional attenuation / endoribonuclease inhibitor activity / RNA-binding transcription regulator activity / positive regulation of ribosome biogenesis / negative regulation of cytoplasmic translation / translational termination / DnaA-L2 complex / four-way junction DNA binding / translation repressor activity / negative regulation of translational initiation / translation elongation factor activity / response to salt stress / negative regulation of DNA-templated DNA replication initiation / regulation of mRNA stability / ribosome assembly / response to cold / mRNA regulatory element binding translation repressor activity / response to reactive oxygen species / assembly of large subunit precursor of preribosome / transcription elongation factor complex / positive regulation of RNA splicing / DNA endonuclease activity / : / cytosolic ribosome assembly / positive regulation of translation / regulation of DNA-templated transcription elongation / transcription antitermination / regulation of cell growth / maintenance of translational fidelity / DNA-templated transcription termination / response to radiation / mRNA 5'-UTR binding / ribosomal small subunit biogenesis / small ribosomal subunit rRNA binding / ribosomal small subunit assembly / ribosomal large subunit assembly / cytosolic small ribosomal subunit / large ribosomal subunit rRNA binding / ribosome binding / large ribosomal subunit / ribosome biogenesis / regulation of translation / small ribosomal subunit / 5S rRNA binding / cytoplasmic translation / cytosolic large ribosomal subunit / transferase activity / negative regulation of translation / tRNA binding / molecular adaptor activity / rRNA binding / ribosome / structural constituent of ribosome / translation / response to antibiotic / mRNA binding / GTPase activity / negative regulation of DNA-templated transcription / GTP binding / DNA binding / RNA binding / zinc ion binding / membrane / identical protein binding / plasma membrane / cytosol / cytoplasm
Similarity search - Function
Elongation factor 4 / GTP-binding protein LepA, C-terminal / Elongation factor 4, domain IV / LepA, C-terminal domain superfamily / GTP-binding protein LepA C-terminus / Ribosomal protein L1, bacterial-type / Elongation factor EFG, domain V-like / Elongation factor G C-terminus / EF-G domain III/V-like / Tr-type G domain, conserved site ...Elongation factor 4 / GTP-binding protein LepA, C-terminal / Elongation factor 4, domain IV / LepA, C-terminal domain superfamily / GTP-binding protein LepA C-terminus / Ribosomal protein L1, bacterial-type / Elongation factor EFG, domain V-like / Elongation factor G C-terminus / EF-G domain III/V-like / Tr-type G domain, conserved site / Translational (tr)-type guanine nucleotide-binding (G) domain signature. / Ribosomal protein L1, conserved site / Ribosomal protein L1 / Ribosomal protein L1 signature. / Ribosomal protein L1, 3-layer alpha/beta-sandwich / Translation elongation factor EFTu-like, domain 2 / Ribosomal protein S21, conserved site / Ribosomal protein S21 signature. / Ribosomal protein L25, short-form / Ribosomal protein L1-like / Ribosomal protein L1/ribosomal biogenesis protein / Elongation factor Tu domain 2 / Ribosomal protein S14, bacterial/plastid / Ribosomal protein L1p/L10e family / Ribosomal protein L11, bacterial-type / Ribosomal protein S21 superfamily / Ribosomal protein S21 / Ribosomal protein S16, conserved site / Ribosomal protein S16 signature. / Translational (tr)-type GTP-binding domain / Elongation factor Tu GTP binding domain / Translational (tr)-type guanine nucleotide-binding (G) domain profile. / Ribosomal protein S21 / Ribosomal protein L11, conserved site / Ribosomal protein L21, conserved site / Ribosomal protein L21 signature. / Ribosomal protein L11 signature. / Ribosomal protein L16 signature 1. / : / Ribosomal protein L6, conserved site / Ribosomal protein L6 signature 1. / Ribosomal protein L16, conserved site / Ribosomal protein L16 signature 2. / Ribosomal protein L11, N-terminal / Ribosomal protein L17 signature. / Ribosomal protein L9 signature. / Ribosomal protein L9, bacteria/chloroplast / Ribosomal protein L9, C-terminal / Ribosomal protein L9, C-terminal domain / Ribosomal protein L9, C-terminal domain superfamily / Ribosomal protein L11/L12 / Ribosomal protein L11, C-terminal / Ribosomal protein L11, C-terminal domain superfamily / Ribosomal protein L11/L12, N-terminal domain superfamily / Ribosomal protein L11/L12 / Ribosomal protein L11, N-terminal domain / Ribosomal protein L11, RNA binding domain / Ribosomal L25p family / Ribosomal protein L25 / Ribosomal protein L28/L24 superfamily / Ribosomal protein L36 signature. / Ribosomal protein L25/Gln-tRNA synthetase, N-terminal / Ribosomal protein L32p, bacterial type / Ribosomal protein L25/Gln-tRNA synthetase, anti-codon-binding domain superfamily / Ribosomal protein L9, N-terminal domain superfamily / Ribosomal protein L9 / Ribosomal protein L9, N-terminal / Ribosomal protein L9, N-terminal domain / Ribosomal protein L28 / Ribosomal protein L35, conserved site / Ribosomal protein L35 signature. / Ribosomal protein L33, conserved site / Ribosomal protein L33 signature. / Ribosomal protein L35, non-mitochondrial / Ribosomal protein L5, bacterial-type / Ribosomal protein L6, bacterial-type / Ribosomal protein L18, bacterial-type / Ribosomal protein L19, conserved site / Ribosomal protein L19 signature. / Ribosomal protein L36 / Ribosomal protein L36 superfamily / Ribosomal protein L36 / Ribosomal protein L9/RNase H1, N-terminal / Ribosomal protein L20 signature. / Ribosomal protein S3, bacterial-type / Ribosomal protein L27, conserved site / Ribosomal protein S6, conserved site / Ribosomal protein L27 signature. / Ribosomal protein S6 signature. / Ribosomal protein S19, bacterial-type / Ribosomal protein S7, bacterial/organellar-type / Ribosomal protein S11, bacterial-type / Ribosomal protein S13, bacterial-type / Ribosomal protein S20 / Ribosomal protein S20 superfamily / Ribosomal protein S20 / Ribosomal protein S9, bacterial/plastid / Ribosomal protein L14P, bacterial-type / Ribosomal protein S4, bacterial-type / Ribosomal protein L34, conserved site
Similarity search - Domain/homology
Small ribosomal subunit protein bS6 / Small ribosomal subunit protein uS7 / Large ribosomal subunit protein uL15 / Large ribosomal subunit protein uL11 / Large ribosomal subunit protein bL19 / Large ribosomal subunit protein uL1 / Large ribosomal subunit protein bL20 / Large ribosomal subunit protein bL27 / Large ribosomal subunit protein bL28 / Large ribosomal subunit protein uL29 ...Small ribosomal subunit protein bS6 / Small ribosomal subunit protein uS7 / Large ribosomal subunit protein uL15 / Large ribosomal subunit protein uL11 / Large ribosomal subunit protein bL19 / Large ribosomal subunit protein uL1 / Large ribosomal subunit protein bL20 / Large ribosomal subunit protein bL27 / Large ribosomal subunit protein bL28 / Large ribosomal subunit protein uL29 / Large ribosomal subunit protein bL32 / Large ribosomal subunit protein bL33 / Large ribosomal subunit protein bL34 / Large ribosomal subunit protein bL35 / Large ribosomal subunit protein bL36A / Large ribosomal subunit protein bL9 / Small ribosomal subunit protein uS10 / Small ribosomal subunit protein uS11 / Small ribosomal subunit protein uS12 / Small ribosomal subunit protein uS13 / Small ribosomal subunit protein bS16 / Small ribosomal subunit protein bS18 / Small ribosomal subunit protein uS19 / Small ribosomal subunit protein bS20 / Small ribosomal subunit protein uS2 / Small ribosomal subunit protein uS3 / Small ribosomal subunit protein uS4 / Small ribosomal subunit protein uS5 / Small ribosomal subunit protein uS8 / Small ribosomal subunit protein uS9 / Large ribosomal subunit protein uL13 / Large ribosomal subunit protein uL14 / Large ribosomal subunit protein uL16 / Large ribosomal subunit protein uL23 / Small ribosomal subunit protein uS15 / Large ribosomal subunit protein bL17 / Large ribosomal subunit protein bL21 / Large ribosomal subunit protein uL30 / Large ribosomal subunit protein uL6 / Small ribosomal subunit protein uS14 / Small ribosomal subunit protein uS17 / Large ribosomal subunit protein uL18 / Large ribosomal subunit protein uL2 / Large ribosomal subunit protein uL3 / Large ribosomal subunit protein uL24 / Large ribosomal subunit protein uL4 / Elongation factor 4 / Large ribosomal subunit protein uL22 / Large ribosomal subunit protein uL5 / Small ribosomal subunit protein bS21 / Large ribosomal subunit protein bL25
Similarity search - Component
Biological speciesEscherichia coli (E. coli)
Methodsingle particle reconstruction / cryo EM / Resolution: 3.7 Å
AuthorsZhang D / Yan K / Liu G / Song G / Luo J / Shi Y / Cheng E / Wu S / Jiang T / Low J ...Zhang D / Yan K / Liu G / Song G / Luo J / Shi Y / Cheng E / Wu S / Jiang T / Low J / Gao N / Qin Y
CitationJournal: Nat Struct Mol Biol / Year: 2016
Title: EF4 disengages the peptidyl-tRNA CCA end and facilitates back-translocation on the 70S ribosome.
Authors: Dejiu Zhang / Kaige Yan / Guangqiao Liu / Guangtao Song / Jiejian Luo / Yi Shi / Erchao Cheng / Shan Wu / Taijiao Jiang / Jizhong Lou / Ning Gao / Yan Qin /
Abstract: EF4 catalyzes tRNA back-translocation through an unknown mechanism. We report cryo-EM structures of Escherichia coli EF4 in post- and pretranslocational ribosomes (Post- and Pre-EF4) at 3.7- and 3.2- ...EF4 catalyzes tRNA back-translocation through an unknown mechanism. We report cryo-EM structures of Escherichia coli EF4 in post- and pretranslocational ribosomes (Post- and Pre-EF4) at 3.7- and 3.2-Å resolution, respectively. In Post-EF4, peptidyl-tRNA occupies the peptidyl (P) site, but the interaction between its CCA end and the P loop is disrupted. In Pre-EF4, the peptidyl-tRNA assumes a unique position near the aminoacyl (A) site, denoted the A site/EF4 bound (A/4) site, with a large displacement at its acceptor arm. Mutagenesis analyses suggest that a specific region in the EF4 C-terminal domain (CTD) interferes with base-pairing between the peptidyl-tRNA 3'-CCA and the P loop, whereas the EF4 CTD enhances peptidyl-tRNA interaction at the A/4 site. Therefore, EF4 induces back-translocation by disengaging the tRNA's CCA end from the peptidyl transferase center of the translating ribosome.
History
DepositionNov 30, 2015-
Header (metadata) releaseDec 30, 2015-
Map releaseDec 30, 2015-
UpdateMay 25, 2016-
Current statusMay 25, 2016Processing site: PDBj / Status: Released

-
Structure visualization

Movie
  • Surface view with section colored by density value
  • Surface level: 0.0035
  • Imaged by UCSF Chimera
  • Download
  • Surface view colored by height
  • Surface level: 0.0035
  • Imaged by UCSF Chimera
  • Download
  • Surface view with fitted model
  • Atomic models: PDB-3jcd
  • Surface level: 0.0035
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerEM map:
SurfViewMolmilJmol/JSmol
Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_6549.map.gz / Format: CCP4 / Size: 122.1 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
AnnotationReconstruction of POST-EF4 complex
Voxel sizeX=Y=Z: 1.32 Å
Density
Contour LevelBy AUTHOR: 0.0035 / Movie #1: 0.0035
Minimum - Maximum-0.01029744 - 0.02840654
Average (Standard dev.)-0.00002254 (±0.00213855)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions320320320
Spacing320320320
CellA=B=C: 422.40002 Å
α=β=γ: 90.0 °

CCP4 map header:

modeImage stored as Reals
Å/pix. X/Y/Z1.321.321.32
M x/y/z320320320
origin x/y/z0.0000.0000.000
length x/y/z422.400422.400422.400
α/β/γ90.00090.00090.000
MAP C/R/S123
start NC/NR/NS000
NC/NR/NS320320320
D min/max/mean-0.0100.028-0.000

-
Supplemental data

-
Sample components

-
Entire : Reconstruction of POST-EF4 complex.

EntireName: Reconstruction of POST-EF4 complex.
Components
  • Sample: Reconstruction of POST-EF4 complex.
  • Complex: ribosome 70S
  • Protein or peptide: EF4

-
Supramolecule #1000: Reconstruction of POST-EF4 complex.

SupramoleculeName: Reconstruction of POST-EF4 complex. / type: sample / ID: 1000 / Number unique components: 2

-
Supramolecule #1: ribosome 70S

SupramoleculeName: ribosome 70S / type: complex / ID: 1 / Recombinant expression: No / Database: NCBI / Ribosome-details: ribosome-prokaryote: ALL
Source (natural)Organism: Escherichia coli (E. coli)

-
Macromolecule #1: EF4

MacromoleculeName: EF4 / type: protein_or_peptide / ID: 1 / Recombinant expression: Yes
Source (natural)Organism: Escherichia coli (E. coli)
Recombinant expressionOrganism: Escherichia coli (E. coli)

-
Experimental details

-
Structure determination

Methodcryo EM
Processingsingle particle reconstruction
Aggregation stateparticle

-
Sample preparation

VitrificationCryogen name: ETHANE / Chamber humidity: 100 % / Instrument: FEI VITROBOT MARK IV

-
Electron microscopy

MicroscopeFEI TITAN KRIOS
Electron beamAcceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
Electron opticsIllumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELDBright-field microscopy
Sample stageSpecimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER
DateOct 20, 2014
Image recordingCategory: CCD / Film or detector model: GATAN K2 SUMMIT (4k x 4k)
Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company

-
Image processing

Final reconstructionResolution.type: BY AUTHOR / Resolution: 3.7 Å / Resolution method: OTHER / Number images used: 18772
DetailsThe particles were selected using an automatic selection program.
FSC plot (resolution estimation)

-
Atomic model buiding 1

Initial modelPDB ID:
SoftwareName: COOT
DetailsThe agreement between the map and the model was examined in COOT and manually adjusted to obtain the best fit
RefinementSpace: REAL
Output model

PDB-3jcd:
Structure of Escherichia coli EF4 in posttranslocational ribosomes (Post EF4)

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more