The 52nd Annual Meeting of the Biophysical Society of Japan Sept. 2014

Tools for highly automated NMR analysis and applications using database

Naohiro Kobayashi

Institute for Protein Research

GUI modules implemented in MagRO-NMRView

2

Modules networked in MagRO system

Controlling and managing data having complicated data structure and automated and/or semi-automated 3 function to support NMR analysis

New paradigm for NMR structure analysis using MagRO/FLYA/CYANA system

GUI module for managing NMR spectra

Sync-Jump: a function to synchronizedly control NMR spectra

This function allows to display 2D spectrum strips belonging to same sync-jump class.

Signal simulation using finite-state automata with information of chemical structure and coherence transfer

Chemical structure + Sequence

Spectrum_type	step	res1 a	atoml	res2 ato	m2	t	ime	seq1	seq2	inten	fold
Spec: hbcbcgcdhd	0	arom	HR	arom	HR		1	0	0	1.0	0
Spec: hbcbcgcdhd	1	arom	HR	arom	CR		0	0	0	1.0	0
Spec: hbcbcgcdhd	2	arom	CR	arom	CR		0	0	0	1.0	0
Spec: hbcbcgcdhd	3	arom	CR	all	CL		0	0	0	1.0	0
Spec: hbcbcgcdhd	4	all	CL	all	CL		2	0	0	1.0	1

Confirmation of assigned chemical shifts using signal simulation of 2D (HB)CB(CGCD)HD spectrum

Signal simulations of the other spectrum types

FLYA GUI module implemented in MagRO-NMRView

X MagRO-ACS Path: nv_fkbp							
Plugins:	Plugins: Import/Export Tools						
Molecule:	ID:	Export Chemical shift table for BMRB					
Chain:	S	Quick s	etup for B	MRB depo	sition		
Residue:	Nan	Export	TALOS+ in	put file			
Atom:	TVI	Export/	Import Fly	a files			
* N 1	21.0	Export	CYANA inp	ut files			
* H	8.	Import	CYANA cal	culation re	sults		
* CA	60.0	542					
* HA	5.2	219					
* CB	34.4	109					
* HB	1.0	753					
* CG1	20.8	398	stereo				
* HG1#	0.8	325	degen				
* CG2	21.4	176	stereo				
* HG2#	0.8	396	degen				
* C 1	75.3	141					
1							

🗙 FLYA setup module						
🗸 clear 🗸 backbone 🔶 all signals 🛛 Close						
13C-corr: 0.0 ppm CPU: 4						
MakeDir Job dir	MakeDir Job dir: flya_test					
Pick All spectra						
Noise Filter						
If required: Unf	old peaks <-setup					
Convert xpk>FLYA						
Export Flya files						
Import FLYA>E	Bass Import FLYA>ACS					
use spectrum type	peak files					
📕 hsqc	AutoPick					
👅 chsqc	AutoPick					
👅 chsqc-ar	AutoPick					
📕 hnco	AutoPick					
👅 hncaco	AutoPick					
👅 hncoca	AutoPick					
👅 hnca	AutoPick					
👅 cbcaconh	AutoPick					
👅 hncacb	AutoPick					
👅 hbhaconh	AutoPick					
👅 n15noe	AutoPick					

All files required for FLYA calculation can be automatically generated with this module

Confirmation and correction of assigned chemical shifts for backbone signals

12

Confirmation and correction of assigned chemical shifts for side-chain signals

Assigned chemical shift table

MagRO-ACS Path: nv fkbp

¹⁵N-edited NOESY,¹³C-edited NOESY

Structure coordinates

Interactively correct the wrongly assigned signals 13

NMR analysis Case1: FKB binding protein (111a.a.)

Very good signal separation, no signal overlapping

Steps for MagRO/FLYA/CYANA analysis

Summary of results: FLYA and CYANA calculations

¹H-¹⁵N-HSQC, HNCO, HN(CA)CO, HNCACB, CBCACONH ¹H-¹³C-HSQC, HCCH-TOCSY aliphatic ¹⁵N-edited NOESY, ¹³C-edited NOESY

Automated signal assign by FLYA

Backbone signal assignments: Completeness: 99.0% Accuracy: 99.0% All signal assignments : Completeness: 94.0% Accuracy: 92.7%

Structure calculation by CYANA

Bacbone atom RMSD between CYANA structure and authentic one: 0.88Å

If the spectrum quality is good enough, the signal assignment and structure calculation will be finished in half a day.

NMR analysis Case2: MDM2-peptide fusion protein (131a.a.)

This protein seems to form dimer. Many signals are very broad and overlapping each other. Several signals are missing because of chemical exchange.

Detail of the MDM2-peptide fusion protein

Model protein which mimics a complex of MDM2 protein with a short peptide

The NMR analysis of this fusion protein is considered to be difficult, as very poor sensitivity have been found for the spectra using ¹³C-spinlock such as CC(CO)NH, HCCH-TOCSY. Steps for MagRO/FLYA/CYANA analysis

Modeling of helix peptide using CS-ROSETTA

Assigned chemical shifts

CS-ROSETTA can generate model helix structure decoys using assigned chemical shifts for backbone NMR signals by searching for structure fragments with similar chemical shifts in database.

GIRAF: search for interface of peptide/protein complex in database

Kinjo, A. et al., Biophysics 2012

Giraf server can search and provide interface of peptide/protein complex

Pipelines to generate model structure of MDM2-peptide complex

Summary of results: FLYA and CYANA calculations

¹H-¹⁵N-HSQC, HNCO, HN(CA)CO, HNCA, HN(CO)CA, HNCACB, CBCACONH,¹H-¹³C-HSQC ¹⁵N-edited NOESY, ¹³C-edited NOESY

+ HADDOCK model structure

Automated signal assign by FLYA

Backbone signal assignments: Completeness: 90.2% Accuracy: 95.0% All signal assignments :

Completeness: 80.0% Accuracy: 94.2%

Structure calculation by CYANA

Bacbone atom RMSD between CYANA structure and authentic one: 1.13\AA

If a good model structure is available, it is possible to perform highly accurate assignments and structure determination for difficult sample

How to get MagRO-NMRView: access to NMRToolBox

To get other NMR tools

- NMRView: Demo version is available from OneMoon Sceintific http://www.onemoonscientific.com/
- •CYANA: You can purchase it from LA-Systems http://www.las.jp/
- FLYA: Please send a request email to Prof. Guntert when you get the license of CYANA from LA-systems

http://www.cyana.org/wiki/index.php/Main_Page http://www.bpc.uni-frankfurt.de/guentert/wiki/index.php/Main_Page

Please do not hesitate to ask us for introdusing MagRO/FLYA/CYANA system

naohiro@protein.osaka-u.ac.jp

Google search: BMRB osaka