

XXXVI Int. Congress of Phys. Sci. TU-3 July 29, 2009 Tutorial-3 #2

Structural modeling of proteins: Principle and application to an ion channel

Haruki Nakamura

PDBj, Institute for Protein Research, Osaka University

Daron M. Standley

Immunology Frontier Research Center, Osaka University

Narutoshi Kamiya

The center for Advanced Medical Engineering and Informatics, Osaka University

http://www.protein.osaka-u.ac.jp/rcsfp/pi/ http://www.pdbj.org/

Protein Data Bank Japan http://www.pdbj.org/

At Institute for Protein Research, Osaka Univ. since 2001 supported from the Institute for Bioinformatics Research and Development, Japan Science and Technology Agency (BIRD-JST).

- •Structure Data curation and editing
- •Structure Data browsing and downloading

Development of other Databases and Services

MAFFTash		
alignment of multiple seque	nces and structu	res
Paste your sequences and PDB IDS (plus chain IDs) here:	Example:	
	>PDBID 3ygsC >S6Q89 MTAAQR LLKLQS >C6Q89 EEHRLLI RDDKENN >PDBID 2plhA	II EDDS & MOIDEI I 1–91 II EDDS & MOIDEI I 1–91 UNFORTUNKILDPYTILSYMISHLEDEEVVYIQAEKNIKGIMLAASLTU UNFORTUNKILDPYTILSYMISHLEDEEVVYIQAEKNIKGIMLAASLTU INDS & MOIDEI II 1–176 IRDS & MOIDEI II 1–91 IRDS & MOIDEI II 1–176 IRDS
	Need help p	icking PD8 IDst Use Prep-MAFFTash.
OR upload a file (ファイルを選択)ファイルが道…ていません		
email address	(required)	
(Submit) (Clear Form)		
PDBj	About MAFETash	Send feedback

Alignment of Sequence and Structures. MAFFTash (Kato. Toh & Standley)

PDBj	
English	Statistics Help Contact Us
Home	PDB) (Protein Data Bank Japan) maintains a centralized anchive of macromolecular structures and provides integrated tools, in collaboration with the RCGB in USA and the MRD-RB in EU PDB in suprovided to RD-RBD.
Data Deposition >> ADIT: PDB Deposition	Sequence Navigator
ADIT-NMR	About Seguence Navigator
Search >>	About sequence mangator
Search PDB ((PSSS)	Sequence Navigator Soap Service
Latest Released Search	
Sequence-Navigator	
Etructure-Navigator	
SeSAW	To Enter Navigator, Input a PDB ID and Chain ID.A
Ligand Binding Sites (OIRAF)	
EM Navigator	OR Input an AA Sequence
Search NMR Data (BMRB)	
Status Search	
Service and Software >>	
Protein Olobe	
ASH	
MAFFTash	
//. Oraphic Viewer	Clustering Options (more clusters)
Derived database >>	No Clustering O Cluster by E-value 10*
ef-stelef-seeklef-surf	(fewer closters)
øProfik	U
ProMode	First All Homology
Molecule of the Month	
Download >>	Clear Form
FTP Archivel/sync Service	
About Remediation Data	

Homolog protein search, Sequence Navigator (Standley)

Encyclopedia of Protein Structures, eProtS (Kinjyo, Kudo, & Ito)

DBj	AN INTER PROPERTY INTER PROPERTY
ah Japanese	統計情報 ヘルブ お聞い合わせ
1 <u>~-7</u>	日本審合賞構造データンロックPDBI: Protein Data Bank Japanyは、JST-BIRDの支援を受け、米国RCSBAとな取り相目的と協力して、生活術分子 立律構造データベースを回帰りに統一化されたアーカイブとして運営するとともこ、種々な解析シールを提供しております。
DIT: PDB Deposition	今月の分子 (Molecule of the Month)
>> sarch PDB ((PSSS)	このページはRCSBの David S. Goodsell順士によるf Molecule of the Month」を日本語に説んたらのです。
nest Released Search rquence-Navigator Nuture-Navigator SMW pand Binding Stas (GRAF) A Hangator earch NMR Data (BMRB) atus Search (X&Y7)-017 >>	107 2003/11 装制で変歩 → ホリ(-Mechanosensitive Charania) 106 2000/12 メリオリンター (106 2000/12 メリオリンター) 101 2000/12 メリオリンター (105 2000/12 メリオリンター) 101 2000/02 メリオリンター (101 2000/02 メリオリンター) 101 2000/02 メリオリンター 102 2000/02 メリオリン 102 2000/02 メリカリン 102 2000/02 メリオリン 102 2000/02 メリカリン 102 2000/02 10
otein Globe 3H AFFTash	 037.2003.01.4目4内時計蛋白質(Circadian Clock Proteins) 036.2007/12.動にスクアレン原化器率(Oxidosqualane Cyclase)
Craphic Viewer F→3ペース >> F-site/eF-seek/eF-surf Protiti oMode alecule of the Morth	UDD _ ADD/T1 学用目記機(注意)ない目的な # seatistic transporter() DB _ ADD/T1 学用目記機(注意)を引入 Example Control System Statistics Example Control System Statistics Example Control Systems DB _ ADD/T2 = 2 # Statistics Example Control Systems DB _ ADD/T2 = 2 # Statistics Example Control Systems DB _ ADD/T2 = 2 # Statistics Example Control Systems DB _ ADD/T2 = 2 # Statistics DD = ADD/T2 = 2 # Statistics DB _ ADD/T2 = 2
ADード >> IP Archiveitoyne Service データについて	

Molecular of the Month, MoM (Goodsell & Kudo)

PDBj	U. NER LOCETOU NER LOCETOU
English	Statistics Help Costact Us
Home	PDB((Protein Data Bank Japan) maintains a centralized antiwe of micromolecular structures and provides integrated tools, in collaboration with the RCSB in UEA and the MSD-EB in EU. PDB in supported by JST-BIRD.
ADIT. PDB Deposition	Structure Navigator
ADIT-NMR	Build Build Build Build
Search>>	Protein Structure Search Engine
Seatch PDB ((PSSS)	About Structure Navigator
Latest Released Search	
Sequence-Navigator	Structure Navigator (Opal-OP)
Obucture-Navigator	
SeSAW	
Lipand Binding Bites (GIRAF) EM Navigator	Chain A (required)
Search NMR Data (BMRB)	
Status Search	PDB Code: OR
Service and Software >> Protein Globe	PDB File:
ASH	
MAFFTash	⊙ return e-mail (address:) ○ return web
/V. Oraphic Viewer	
Derived database >>	Search Clear Form
elf-stelef-seeklef-surf	
6PittS	
ProMode	
Molecule of the Month	
Download >> FTP Archive/raync Service	
About Remediation Data	

Similar fold search, Structure Navigator (Standley & Toh)

Protein Folds Browser, Protein Globe (Kinjo & Standley)

Development of other Databases and Services

Protein Molecular Surface Database, *e*F-site (Kinoshita & Nakamura)

SeSAW **Functional Annotation** Sequence-Derived Structural Alignment Weights Enter a PDB ID or Upload a PDB-formatted file PDB ID 2czl Or ファイルを選択 ファイルが選…ていません Chain ID A (required) • Send results to this email address harukin@protein.osaka-u.ac.jp O Display results in browser as they are completed If your query is a homology model, the following information is requested Template PDB ID Template Chain ID A Submit Clear Form PDR About SeSAW Send feedback

Function Annotation from Folds and Sequences, **SeSAW** (Standley)

	тор	Help	FAQ	References	Links
			1		Ŀ
PDBi	1	0	-S	eel	
beni Galbabayar					-
ABOUT eF-seek: Molecular function	n of prot	eins are	determin	ed and	a total
by their three dimension	onal stru	ctures, tl	nus the	SE	
similarity of protein str	ucture c	an give s	ome clu	es to	1 7 12
function are begun wit	h the m	ases, me decular i	e molecul steraction		A Carlos
with small molecules	(ligands)	eF-see	k is a we		XA
server to search for th	e simila	r ligand b	inding sit	es 🚺	V V VY
for the uploaded coord	dinate file	e with PC	B format		
The representative bin	iding site	es in eF-s	site datab	ase	

search algorithm.

Submission STEP-1: Specify a PDB format file

> E-mail address Keyword: *1

Title: (optional)

are search by our own algorithm based on the clique

Search for Similar Surface, eFseek (Kinoshita & Nakamura)

参昭

PDBj GIRAF
Similarity Search for Ligand Binding Sites at Atomic Resolution [Help]
Note: This service is currently under development.
Given a query protein structure. GIRAF searches for ligand binding sites in the PDB that are structurally similar to substructures of the query As a query, you can specify a PDB ID or upload your own PDB-formanted file. For more information, please refer to the help page.
GIRAF query upload
Input PDB ID:
or upload a PDB file: (ファイルの現所) ファイルが進っていません
Chain IDs (optional): at (comma-separated multiple IDs [e.g., "A,B"] or "all" are allowed.)
Your email address (optional):
(submit) (reset)
DB version: 2008-06-13 (186485 ligand binding sites)
References
 Similarity search for local protein structures at atomic resolution by exploiting a database management system. Kinjo, A. R.; Nakamura, H. BIOPHYSICS 3:75-84 (2007) [for the description of the method]
 Comprehensive structural classification of ligand binding motifs in proteins. Kinjo, A. R.; Nakamura, H. Structure (in press) [for the identification of structural motifs]
Protein Data Bank Japan 2008-11-24

Ligand Binding Site Search, GIRAF (Kinjo)

Electron Microscopy Navigator, EM-Navi (Suzuki)

Protein Dynamics Database, **ProMode** (Wako & Endo)

1) Introduction

- 2) Search for homolog(s)
- 3) Threading (3D-1D compatibility)
- 4) Backbone modeling
- 5) Side-chain modeling
- 6) Structure optimization

Homology modeling /Comparative modeling

A structural model of a target protein is constructed based on the homolog protein structure as a template, using the similarity of amino acid sequences

- Requirement for the homology modeling
 - Sequence information: 9.2 M (UniProt)
 - 3D Structure : 59 K (wwPDB)
 - 3D structural model can be made when any structure of the family protein is in DB.
 - •Total family number: about 30,000 (30% identity)
 - Total folds: about 2,000 (loose definition)

Principle

- When sequence is similar, structure is similar.

Modeling procedure

- Search homolog proteins.
- Construct (multiple) sequence alignment
- Differences in the backbone and the sidechains are modeled.

D. Baker & A. Sali (2001) Science 294, 93-96.

Simple Example

Swine Influenza A virus neuraminidase (NA) gene

GenBank: FJ981614.1

Influenza	A virus (A/Texas/04/2	2009(H1N1)) segment 6 🛛 🚽	Change Region Shown	FEATURES	Location/Qualifiers 1.,1410
neuramin	idase (NA) gene, con	nplete cds 🧹	Customize View		/organism="Influenza A virus (A/Texas/04/2009(H1N1))" /mol type="viral cRNA"
Comment Fea	atures Sequence		Sequence Analysis Tools		/strain="A/Texas/04/2009" /serotype="H1N1"
LOCUS	FJ981614	1410 bp cRNA linear VRL 01-MAY-2009	BLAST Sequence		/host="Homo sapiens; gender M; age 16"
DEFINITION	(NA) gene, complete cd:	exas/04/2009(HINI)) segment 6 heuraminidase s.	Pick Primers		/segment="6"
ACCESSION	FJ981614				/country="USA: Texas state"
VERSION	FJ981614.1 GI:2292995	18	Influenza Viral Resource	gene	/collection_date="14-Apr-2009" 1. 1410
DBLINK	Project: 37813		Flu-related NCBI resources including	9010	/gene="NA"
KEYWORDS			literature.	CDS	11410
SOURCE	Influenza A virus (A/T	exas/04/2009(H1N1))			$/gene="NA" \Lambda \Lambda coulonco$
ORGANISM	Influenza A virus (A/Te	exas/04/2009(H1N1))	Recent Activity		/codon_start=1 AA SCUUCIICC
	Influenzavirus A.	e-strand viruses; orthomyxoviridae;	Turn Off Clear		/protein id="AC055360.1"
REFERENCE	1 (bases 1 to 1410)		Turn Off Clear		(db_wref="CI:220299519"
AUTHORS	Shu, B., Balish, A., Gar	ten,R., Smith,C., Emery,S., Barnes,J.,	Influenza A virus		/translation="MNPNQKIITIGSVCMTIGMANLILQIGNIISIWISHSIQLGNQN
OT OT P	Deyde, V., Klimov, A. and	d Cox,N.	(A/Texas/04/2009(H1N1))		QIETCNQSVITYENNTWVNQTYVNISNTNFAAGQSVVSVKLAGNSSLCFVSGWAIYSK DNSVRTGSKGDVFVIREPFISCSPLECRTFFLTOGALLNDKHSNGTIKDRSPYRTLMS
JOURNAL	Unpublished	ovel swine Hini influenza			CPIGEVPSPYNSRFESVAWSASACHDGINWLTIGISGPDNGAVAVLKYNGIITDTIKS
REFERENCE	2 (bases 1 to 1410)			_	WRNNILRTQESECACVNGSCFTVMTDGPSNGQASYKIFRIEKGKIVKSVEMNAPNYHY
AUTHORS	Shu, B., Balish, A., Gar	ten,R., Smith,C., Emery,S., Barnes,J.,	All links from this record		EECSCYPDSSEITCVCRDNWHGSNRPWVSFNQNLEYQIGYICSGIFGDNPRPNDKTGS
0 T 0 T D	Deyde, V., Klimov, A. and	d Cox,N.		-	CGPVSSNGANGVKGFSFKYGNGVWIGRTKSISSRNGFEMIWDPNGWTGTDNNFSIKQD
TITLE	Submitted (01-MAY-2009	WHO Collaborating Center for Surveillance	Protein		DTVGWSWPDGAELPFTIDK"
OOORAAL	Epidemiology and Control	ol of Influenza, Influenza Division, Centers	Taxonomy	ORIGIN	
	for Disease Control and	d Prevention, 1600 Clifton Road, N.E.,	Polated Sequences	l atgaatcca	a accaaaagat aataaccatt ggttcggtct gtatgacaat tggaatggct
0010/7017	Atlanta, GA 30333, USA	1) sime island during human suize flu	 Related Sequences 	61 aacttaata	t tacaaattgg aaacataatc tcaatatgga ttagccactc aattcaactt
COMMENT	outbreak of 2009. For	nore information, see http://www.cdc.gov/.		181 tgggtaattaat	c agacatatgt taacatcagc aacaccaact ttgctgctgg acagtcagtg
	bubbleak of 1000. Tor	more information, see <u>neepi//www.edergov/</u> .		241 gtttccgtg	a aattagcggg caatteetet etetgeeetg ttagtggatg ggetatatae
	Some of the information	n does not have GenBank feature identifiers		301 agtaaagac	a acagtgtaag aatcggttcc aagggggatg tgtttgtcat aagggaacca
	and is being provided	in the comment section.		361 ttcatatca	t gctccccctt ggaatgcaga accttcttct tgactcaagg ggccttgcta
	##FpifluData_STAPT##			421 aatgacaaa 481 tgtcctatt	g gtgaagttee eteteetaa aasteaagat ttgagteagt egettggtea
	Isolate	A/Texas/04/2009		541 gcaagtgct	t gtcatgatgg catcaattgg ctaacaattg gaatttctgg cccagacaat
	Subtype	H1N1		601 ggggcagtg	g ctgtgttaaa gtacaacggc ataataacag acactatcaa gagttggaga
	Segment_name	NA		661 aacaatata	t tgagaacaca agagtctgaa tgtgcatgtg taaatggttc ttgctttact
	Host_gender	M		721 gtaatgace 781 ggaaagata	g atggaccaag taatggacag gcctcataca agatcttcag aatagaaaag g tcaaatcagt cgaaatgaat gcccctaatt atcactatga ggaatgctcc
	Passage history	x/c1		841 tgttatcct	g attotagtga aatoacatgt gtgtgcaggg ataactggca tggctcgaat
	Adamantane_resistance	resistant		901 cgaccgtgg	g tgtctttcaa ccagaatctg gaatatcaga taggatacat atgcagtggg
	Zanamivir_resistance	sensitive		961 attttcgga	g acaatccacg ccctaatgat aagacaggca gttgtggtcc agtatcgtct
	Oseltamivir_resistance	sensitive		1021 aatggagca	a atggagtaaa aggattttca ttcaaatacg gcaatggtgt ttggataggg
	State/Province	USA Texas state		1141 actgggaca	g acaataactt ctcaataaag caagatatcg taggaataaa tgagtggtca
	Collection day	14		1201 ggatatagc	g ggagttttgt tcagcatcca gaactaacag ggctggattg tataagacct
	Collection_month	4		1261 tgcttctgg	g ttgaactaat cagagggcga cccaaagaga acacaatctg gactagcggg
	Collection_year	2009		1321 agcagcata	t ccttttgtgg tgtaaacagt gacactgtgg gttggtcttg gccagacggt
	EPI_accession	EPI177301		1381 gctgagttg	c catttaccat tgacaagtaa
	##EpifluData-END##				

>2qwk chain-A: NEURAMINIDASE >Influenza A virus neuraminidase(NA) gene, complete cds. FJ981614

>2qwk chain-A: NEURAMINIDASE >Influenza A virus neuraminidase(NA) gene, complete cds. FJ981614

Red: Active site residues surrounding Tamiflu

Electrostatic molecular surfaces Blue: positive, Red: negative, yellow: hydrophobic

Swine NA model

2qwk A

>2qwk chain-A: NEURAMINIDASE >Influenza A virus neuraminidase(NA) gene, complete cds. FJ981614

H274Y: Tamiflu resistant

Red: Active site residues surrounding Tamiflu

Electrostatic molecular surfaces Blue: positive, Red: negative, yellow: hydrophobic

2qwk A

1) Introduction

2) Search for homolog(s)

- 3) Threading (3D-1D compatibility)
- 4) Backbone modeling
- 5) Side-chain modeling
- 6) Structure optimization

Goal of this Tutorial: To construct the homology model of hERG channel

Get amino-acid sequence of hERG channel from NCBI (http://www.ncbi.nlm.nih.gov/)

	31 PubMed Nucleotide Protein Genome Structure OMIM PMC J	My NCBI 2 [Sign In] [Register] Journals Books
Search Protein	tor Go Clear	
Limits Pre	view/Index History Clipboard Details	
Format: GenP	ept <u>FASTA</u> <u>Graphics</u> <u>More Formats</u> ▼	Download ▼ Save ▼ Links ▼
🔶 Try the Gr	aphics report for a more informative view of the biological features.	
Swiss-Prot: Q12	809.1	Change Region Shown
RecName	: Full=Potassium voltage-gated channel subfamily H member 2:	Customize View
AltName:	Full=Voltage-gated potassium channel subunit Kv11.1;	Sequence Analysis Tools
AltName:	Full=Etner-a-go-go-related gene potassium channel 1; Short=H-	BLAST Sequence
EKG, SHO	nt-Eigi, Short-Ether-a-go-go-related protein 1, Shor	Conserved Domains
Comment Fe	atures Sequence	Articles about the KCNH2 gene
LOCUS DEFINITION	Q12809 1159 aa linear PRI 07-JUL-2009 RecName: Full=Potassium voltage-gated channel subfamily H member 2;	 Genetic Polymorphism of KCNH2 Confers Predispos [J Cardiovasc Electrophysiol. 2009]
	AltName: Full=Ether-a-go-go-related gene potassium channel 1; Short=H-ERG; Short=Ergl; Short=Ether-a-go-go-related protein 1;	 Breaking the gene barrier in schizophrenia. [Nat Med. 2009]
ACCESSION VERSION	Short=Eag-related protein 1; AltName: Full=eag homolog. Q12809 O12809.1 GI:7531135	 Interactions of H562 in the S5 helix with T618 and S621 in the pore helix a [Biophys J. 2009]
DBSOURCE	UniProtKB: locus KCNH2_HUMAN, accession 012809;	» See all
	extra accessions:075418,075680,09BT72,09BUT7,09H3P0	Identical Proteins for Q12809.1
	created: May 30, 2000. sequence updated: Nov 1, 1996.	Sequence 2 from patent US 7541 [ACS12627]
	annotation updated: Jul 7, 2009.	Sequence 5 from patent US 7537 [ACS08477]
	AAL37559.1, AB044806.1, BAB19682.1, AJ512214.1, CAD54447.1,	Sequence 2 from patent US 7510[ACQ19114]
	AJ010538.1, CAA09232.1, AJ010539.1, AJ010540.1, AJ010541.1, AJ010542.1, AJ010543.1, AJ010544.1, AJ010545.1, AJ010546.1,	» See all
	<u>AJ010547.1, AJ010548.1, AJ010549.1, AJ010550.1, AJ010551.1</u> , AF052728.1, AAC69709.1, BC001914.1, AAH01914.2, BC004311.2,	RefSeq Protein Isoforms
	AAH04311.2, I38465, NP_000229.1, NP_742053.1, NP_742054.1, 1BYW_A, 1UJL_A	See 3 reference sequence protein isoforms for the KCNH2 gene.
	<pre>xrefs (non-sequence databases): IPI:IPI00029662, IPI:IPI00172614, IPI:IPI00221190, IPI:IPI00221191, UniGene:Hs.647099, PDBsum:IBYW, PDBsum:IUJL, IntAct:Q12809, TCDB:1.A.1.20.1, PhosphoSite:Q12809, PRIDE:Q12809, Ensembl:ENSG0000055118, GeneID:3757, KEGG:hsa:3757, UCSC:uc003wib.1, UCSC:uc003wic.1, UCSC:uc003wie.1, GeneCards:GC07M150272, H-InvDB:HIX0007217, HGNC:6251, HPA:CAB006838, MIM:152427, MIM:609620, Orphanet:130, Orphanet:768, Orphanet:51083, PharmGKB:PA212, HOGENOM:Q12809, HOVERGEN:Q12809, OMA:Q12809, DrugBank:DB01118, DrugBank:DB00276, DrugBank:DB00637, DrugBank:DB01136, DrugBank:DB00604, DrugBank:DB00204,</pre>	More about the KCNH2 gene This gene encodes a voltage-activated potassium channel belonging to the eag family. It shares sequence similarity with the Drosophila ether Also Known As: ERG1, HERG, HERG1, Kv11 Homologs of the KCNH2 gene The KCNH2 gene is conserved in chimpanzee

Region	1055
	/gene="KCNH2"
	/gene_synonym="ERG"
	/gene_synonym="ERG1"
	/gene_synonym="HERG"
	/gene synonym="HERG1"
	/region name="Variant"
	/experiment="experimental evidence, no additional details
	recorded"
	/note="R -> 0 (in dbSNP:rs41307270), /FTTd=VAR 036682."
Site	1137
<u>5100</u>	/ conce="VCNU2"
	/gene_ KUNNZ
	/gene_synonym= LkG1
	/gene_synonym="HERG"
	/gene_synonym="HERG1"
	/site_type="mutagenized"
	/experiment="experimental evidence, no additional details
	recorded"
	/note="S->A: Abolishes phosphorylation; when associated
	with A-283; A-890 and A-895."
ORIGIN	
1 mpvrrghvap	qntfldtiir kfegqsrkfi ianarvenca viycndgfce lcgysraevm
61 qrpctcdflh	gprtqrraaa qiaqallgae erkveiafyr kdgscflclv dvvpvknedg
121 avimfilnfe	vvmekdmvgs pahdtnhrgp ptswlapgra ktfrlklpal laltaressv
181 rsggaggaga	pgavvvdvdl tpaapssesl aldevtamdn hvaglgpaee rralvgpgsp
241 prsapgglps	prahslnpda sysscslart rsrescasvr rassaddiea mragylpppp
301 rhastgamhp	lrsgllnsts dsdlvrvrti skipgitlnf vdlkgdpfla sptsdreija
361 pkikerthny	tekytaylal gadylpeykl gaprihrwti lhyspfkayw dwlilllyiy
421 tayftpysaa	fliketeegn patecgacg playedlivd imfivdilin fritevnane
481 evyshogria	why knowshi a dwaasin fall life see all all ktarll river kid
541 ruceucaaul	filmetfali akulaciwa igamegabad giraulala dajakawas
601 alaanaikdk	untaluftfa altaufaru antración al antración al musaifarua
661 sijarlugat	yvtalyitis sitsvylynv spinisekti sitvanutysi nyasilyivs
701 andriysgt	aryntymir reifingib nbigrieey ignawsythg iamnavikgi
721 pecigadici	ninslight kpirgatkýc iralamkikt thappgatlv hagdiltaly
/81 fisrgsiell	rgavvalig knaligepin lyarpgksng avraltycal nkinradile
841 Viamypersa	nīwssielti niratnmipg spystelegg isrqrkrkis irrrtakate
901 qpgevsalgp	gragagpssr grpggpwges pssgpsspes sedegpgrss spirivpiss
961 prppgeppgg	epimedceks sdtcnpisga isgvsnifsf wgdsrgrqyg elprcpaptp
1021 sllniplssp	grrprgdves ridalgrgin rietrisadm atvigligrg mtlvppaysa
1081 vttpgpgpts	tspllpvspl ptltldslsq vsqfmaceel ppgapelpqe gptrrlslpg
1141 qlgaltsqpl	hrhgsdpgs
//	
	Write to the Help Desk
	NCBI NLM INIH
	Department of Health & Human Services
	Privacy Statement I Freedom of Information ACI I Disclaimer

Get amino-acid sequence of hERG channel from UniProt (http://www.uniprot.org/)

UniProt → UniProtKB	Downloads · Contact · Documentation/Help
Search in Protein Knowledgebase (UniProtKB)	Query Search Clear Fields » Search Blast * Align * Retrieve ID Mapping * Swiss-Prot 012809 (KCNH2 HUMAN) Contribute
Last modified July 7, 2009. Version 1	OP. Solution History OP. Solution Read comments (1) or add your own
ն # Clusters with 100%, 90%, 50% ic	lentity I 🗅 Documents (6) I 🗐 Third-party data I 👼 Customize display
Names and origin · Protein attributes · 0 resources · Cross-references · Entry inf	General annotation (Comments) · Ontologies · Alternative products · Sequence annotation (Features) · Sequences · References · Web ormation · Relevant documents
Names and origin	Hide I Top
Protein names	Recommended name: Potassium voltage-gated channel subfamily H member 2 Alternative name(s): Voltage-gated potassium channel subunit Kv11.1 Ether-a-go-go-related gene potassium channel 1 Short name=H-ERG Short name=Etg1 Short name=Ether-a-go-go-related protein 1 Short name=Eag-related protein 1 eag homolog
Gene names	Name: KCNH2 Synonyms: ERG, ERG1, HERG, HERG1
Organism	Homo sapiens (Human) [Complete proteome]
Taxonomic identifier	9606 [NCBI]
Taxonomic lineage	Eukaryota · Metazoa · Chordata · Craniata · Vertebrata · Euteleostomi · Mammalia · Eutheria · Euarchontoglires · Primates · Haplorrhini · Catarrhini · Hominidae · Homo
Protein attributes	Hide I Top
Sequence length	1159 AA.
Sequence status	Complete.
Sequence processing	The displayed sequence is not processed.

	Mole	cule processing					
		Chain	1 – 1159	1159	Potassium voltage-gated channel subfamily H member 2		PRO_0000053999
	Regi	ons					
		Topological domain	1 – 403	403	Cytoplasmic Potential		
		Transmembrane	404 - 424	21	Segment S1 Potential		
		Transmembrane	451 – 471	21	Segment S2 Potential	·	
		Topological domain	472 – 495	24	Cytoplasmic Potential		
		Transmembrane	496 - 516	21	Segment S3 Potential	·	
		Transmembrane	521 - 541	21	Segment S4 Potential		
		Topological domain	542 - 547	6	Cytoplasmic Potential		
-		Transmembrane	548 - 568	21	Segment S5 Potentiar		
		Transmembrane	639 - 659	21	Segment S6 Potential	·	
_		Topological domain	660 – 1159	500	Cytoplasmic Potential		
		Domain	41 – 70	30	PAS	-	
		Domain	92 – 144	53	PAC	-	
		Nucleotide binding	742 - 842	101	cNMP		
		Region	612 - 632	21	Segment H5 (pore-forming) Potential		
		Motif	624 - 629	6	Selectivity filter By similarity		
		Compositional bias	297 - 300	4	Poly-Pro	· · · · · · · · · · · · · · · · · · ·	
	Amir	no acid modifications					
		Glycosylation	598	1	N-linked (GlcNAc) Ref.11		
	Natu	ral variations					
		Alternative sequence	1 – 376	376	MPVRREKVTQ → MAAPAGKASRTGALRPRAQK GRVRRAVRISSLVAQE in isoform 2.		VSP_000965
		Alternative sequence	139 – 195	57	Missing in isoform 4.		VSP_000966
		Alternative sequence	801 - 886	86	KNDIFSRQRK →		VSP_000967

Second	ary structure							
1								
He	lix Strand	Turn						
Details.								
Seque	ences							
	Sequence				Length M	lass (Da)	Tools	
_	Isoform 1 II In	viParcl		FASTA	1 1 5 9 1	26 655	Plast	A
	Last modified No	wember 1, 1996	6. Version 1.	TAUTA	1,155 1	20,000	Diast	- go
	Checksum: D03E	BD4F657641FB	A					
	10			4.0			60	
	1 <u>0</u> MPVRRGHVAP	2 <u>0</u> QNTFLDTIIR	3 <u>0</u> KFEGQSRKFI	4 <u>0</u> IANARVENCA	VIYCNDGF	5 <u>0</u> CE LCGY	6 <u>0</u> SRAEVM	
	70	80	90	100	1	10	120	
	QRPCTCDFLH	GPRTQRRAAA	QIAQALLGAE	ERKVEIAFYR	KDGSCFLC	LV DVVP	VKNEDG	
	13 <u>0</u>	14 <u>0</u>	15 <u>0</u>	16 <u>0</u>	1	7 <u>0</u>	18 <u>0</u>	
	AVIMFILNFE	VVMEKDMVGS	PAHDTNHRGP	PTSWLAPGRA	KTFRLKLP	AL LALI	ARESSV	
	19 <u>0</u> RSGGAGGAGA	20 <u>0</u> PGAVVVDVDL	21 <u>0</u> TPAAPSSESL	22 <u>0</u> ALDEVTAMDN	2 HVAGLGPA	3 <u>0</u> EE RRAL	24 <u>0</u> VGPGSP	
	250	260	270	280	2	9.0	300	
	PRSAPGQLPS	PRAHSLNPDA	SGSSCSLART	RSRESCASVR	RASSADDI	EA MRAG	VLPPPP	
	31 <u>0</u>	32 <u>0</u>	33 <u>0</u>	34 <u>0</u>	3	5 <u>0</u>	36 <u>0</u>	
	RHASTGAMHP	LRSGLLNSTS	DSDLVRYRTI	SKIPQITLNF	VDLKGDPF	LA SPTS	DREIIA	
	370	38 <u>0</u>	390	400	4	1 <u>0</u> VW DWLT	42 <u>0</u>	
	PRIKERINW	IERVIQVEDE	GADVEFEIKE	QAPAINANII	LHIDFINA			
	43 <u>0</u> TAVFTPYSAA	44 <u>0</u> FLLKETEEGP	45 <u>0</u> PATECGYACQ	46 <u>0</u> PLAVVDLIVD	4 IMFIVDIL	7 <u>0</u> IN FRTI	48 <u>0</u> YVNANE	
	490	500	510	520	5	30	540	
	EVVSHPGRIA	VHYFKGWFLI	DMVAAIPFDL	LIFGSGSEEL	IGLLKTAR	LL RLVR	VARKLD	
	55 <u>0</u>	56 <u>0</u>	57 <u>0</u>	58 <u>0</u>	5	9 <u>0</u>	60 <u>0</u>	
	RYSEYGAAVL	FLLMCTFALI	AHWLACIWYA	IGNMEQPHMD	SRIGWLHN	LG DQIG	KPYNSS	
	61 <u>0</u> GLGGPSIKDK	62 <u>0</u> YVTALYFTFS	63 <u>0</u> SLTSVGFGNV	64 <u>0</u> SPNTNSEKIF	6 SICVMLIG	5 <u>0</u> SL MYAS	66 <u>0</u> IFGNVS	

- 1) Introduction
- 2) Search for homolog(s)
- 3) Threading (3D-1D compatibility)
- 4) Backbone modeling
- 5) Side-chain modeling
- 6) Structure optimization

The amino acid sequence of a target protein is threaded on many known 3D structures, and the most compatible 3D structure is searched.

Step2: Get homologs in PDB and have alignments with 3D modes. (http://sysimm100.protein.osaka-u.ac.jp/sfas/)

Sequence to Function Annotation Server

WPI Osaka University

FReC

Please enter your query

PDB

Name: hERG(550-67

Seqeunce:

>hERG | Q12809 | residues 550–671 LFLLMCTFALIAHWLACIWYAIGNMEQPHMDSRIGWLHNLGDQIGKPYNSSGLGGPSIKDKY VTALYFTFSSLTSVGFGNVSPNTNSEKIFSICVMLIGSLMYASIFGNVSAIIQRLYSGTA

Or

Upload a FASTA-formatted sequence file: ファイルを選択 ファイルが選…ていません

Select Alignment methods

hERG Results									
	Method	Templa	te E-value	Coverage	Alignment	Model			
	HHpred	2r9rB	j <u>V</u> 1.10e-19	75	Text Jalview	Spanner			
	HHpred	1orqC	<u>jV 9.70e-20</u>	46	Text Jalview	Spanner			
	HHpred	<u>3behA</u>	j <u>V</u> 2.20e-19	75	Text Jalview	Spanner			
	HHpred	1xl4A	j <mark>V</mark> 8.20e-17	47	Text Jalview	Spanner			
	HHpred	<u>2a9hA</u>	j <mark>V</mark> 3.70e-17	49	Text Jalview	<u>Spanner</u>			
	HHpred	<u>2ih3C</u>	j <u>V</u> 4.10e-16	48	Text Jalview	Spanner			
	HHpred	<u>2q67A</u>	j <u>V</u> 2.40e-16	67	Text Jalview	<u>Spanner</u>			
	HHpred	<u>2qksA</u>	j <u>V</u> 5.60e-13	45	Text Jalview	<u>Spanner</u>			
	Psiblast	<u>1lnqG</u>	j <u>V</u> 1.74e-08	40	Text Jalview	Spanner			
	Psiblast	1lnqH	<u>i</u> V 1.74e-08	40	Text Jalview	Spanner			
	Psiblast	1lnqB	j <u>V</u> 1.74e-08	40	Text Jalview	Spanner			
	Psiblast	<u>1lnqA</u>	j <u>V</u> 1.74e-08	40	Text Jalview	Spanner			
	Psiblast	<u>1lnqF</u>	j <mark>V</mark> 1.74e-08	40	Text Jalview	Spanner			
	Psiblast	<u>1lnqE</u>	j <u>V</u> 1.74e-08	40	Text Jalview	<u>Spanner</u>			
	Psiblast	<u>1lnqC</u>	j <u>V</u> 1.74e-08	40	Text Jalview	<u>Spanner</u>			
	Psiblast	<u>1lnqD</u>	j <u>V</u> 1.74e-08	40	Text Jalview	<u>Spanner</u>			
	Psiblast	<u>1orqC</u>	j <u>V</u> 1.67e-07	42	Text Jalview	<u>Spanner</u>			
	Psiblast	<u>2a0lB</u>	j <mark>V</mark> 4.19e-07	41	Text Jalview	<u>Spanner</u>			
	Blast	<u>1ujlA</u>	j <u>V</u> 8.03e-20	33	Text Jalview	<u>Spanner</u>			
	Blast	<u>2q6aB</u>	j <u>V</u> 7.93e-04	29	Text Jalview	Spanner			
	Blast	<u>2q67B</u>	j <u>V</u> 7.48e-04	29	Text Jalview	Spanner			
	Blast	<u>2q67A</u>	j <u>V</u> 7.24e-04	29	Text Jalview	<u>Spanner</u>			
	Blast	<u>2ahzB</u>	j <u>V</u> 8.62e-04	29	Text Jalview	<u>Spanner</u>			
	Blast	<u>3e89B</u>	j <u>V</u> 1.03e-03	31	Text Jalview	<u>Spanner</u>			
	Blast	<u>3e8hB</u>	j <u>V</u> 1.03e-03	31	Text Jalview	<u>Spanner</u>			
	Blast	<u>2q6aA</u>	j <u>V</u> 8.13e-04	29	Text Jalview	<u>Spanner</u>			
	Blast	<u>2ahyA</u>	j <u>V</u> 8.84e-04	29	Text Jalview	<u>Spanner</u>			
	Blast	<u>3e83B</u>	j <u>V</u> 1.03e-03	31	Text Jalview	<u>Spanner</u>			

(http://sysimm100.protein.osaka-u.ac.jp/tmp/SFAS16483/hERG_top.html)

Result of SFAS: The best template is 2r9rB

1) Introduction

- 2) Search for homolog(s)
- 3) Threading (3D-1D compatibility)

4) Backbone modeling

- 5) Side-chain modeling
- 6) Structure optimization

Loop modeling: Modeling for deletion is easy, but for Insertion (in particular, with longer than 7 residues) is difficult.

• Loop Search method: the known loop fragments are used.

• Conformational search method: the most stable loop structure is searched from the possible candidates.

Modeling of a loop structure longer than 10 residues.

- 1) Introduction
- 2) Search for homolog(s)
- 3) Threading (3D-1D compatibility)
- 4) Backbone modeling
- 5) Side-chain modeling
- 6) Structure optimization

Side-chain modeling

a) Local stable conformations for individual residue at the energy minima b) Local stable conformations for individual residue from Statistics in PDB

Rotamer	Number	%	Cł	Chi 1	
Valine		37			
t	100	67-1	173.5	(9.0)	
	39	26-2	-63.4	(8.1)	
+	8	5.4	69-3	(9.6)	
Other	2	1.3			
Leucine					
- t	94	63-9	-64.9	(8.2)	176-0 (9-9
t +	36	24.5	-176.4	(10.2)	63.1 (8.2
tt	7	4.8	-165-3	(10.0)	168-2 (34-2
++	3	2.0	44.3	(20.0)	60-4 (18-8
Other	7	4.8			
Isoleucine					
- t	42	45.2	- 60.9	(7.5)	168-7 (11-6
	17	18.3	- 59.6	(9.6)	-64-1 (14-3
+ 1	15	16-1	61.7	(5.0)	163-8 (16-4
t t	12	12.9	-166-6	(10-1)	166-0 (8-9
t +	3	3.2	-174.8	(24.9)	72.1 (10.5
Other	4	4-3			
Serine					
+	94	48.0	64.7	(16-1)	
-	56	28.6	- 69.7	(14.6)	
t	46	23.5	-176-1	(20-2)	
Threonine	+		24		
+	81	47.9	62.7	(8.5)	
-	76	45.0	- 59.7	(9.4)	
t	8	4.7	-169.5	(6-6)	
Other	4	2.4		0.000	
Systeine					
-	57	60.6	-65.2	(10-1)	
t	23	24.5	-179.6	(9.5)	
+	13	13.8	63.5	(9-6)	
Other	1	1.1		diana di	

Table 3

Backbone-dependent rotamer library for proteins

	ϕ			ψ		χ -population		
	Number	lower/	upper	lower/	upper	+60°	180°	-60°
v	20	-160	-140	120	140	50	45	5
V	31	-160	-140	140	160	48	10	39
v	12	-160	-140	160	180	17	0	83
v	50	-140	-120	100	120	4	94	2
v	146	-140	-120	120	140	8	86	5
v	99	-140	-120	140	160	12	35	53
v	50	-140	-120	. 160	180	0	4	96
V	11	-120	-100	-60	-40	0	82	18
V	20	-120	-100	-20	0	5	15	80
V	71	-120	-100	100	120	0	97	3
v	181	-120	-100	120	140	7	88	4
v	49	-120	-100	140	160	14	43	43
v	12	-120	-100	160	180	0	0	100
v	13	-100	-80	-60	-40	8	92	0
v	15	-100	-80	-40	-20	0	53	47
v	13	-100	-80	-20	0	23	15	62
v	43	-100	-80	100	120	7	93	0
v	80	-100	-80	120	140	6	88	6
v	29	-100	-80	140	160	14	41	45
v	207	-80	-60	-60	-40	2	97	0
v	131	-80	-60	-40	-20	11	60	28
v	19	-80	-60	-20	0	32	21	47
v	15	-80	-60	100	120	0	93	7
v	62	-80	-60	120	140	2	94	5
v	27	-80	-60	140	160	0	56	44
v	109	-60	-40	-60	-40	2	92	6
V	39	-60	-40	-40	-20	28	54	18
v	16	-60	-40	120	140	6	75	19

Ponder & Richards (1987) J. Mol. Biol. 193, 775-791.

Dunbrack & Karplus (1993) J. Mol. Biol. 230, 543-574.

Side-chain modeling

c) Combinatorial approach (Monte Carlo method, GA, DEE, etc.)

The protein jigsaw puzzle. At first sight the solution is easy because there is a known backbone structure (green) to copy. But packing the side-chains (small red and black circles) is difficult, because for each piece there are a number of alternatives (rotamers) only one of which will appear in the completed picture at any position. The approach of Desmet et al. can be explained, in simplified terms, by considering the options for the residue (C) at the second position. If there are three rotamers for C and two rotamers for S. then each C is tried with each S at the first and third positions. If there is a rotamer of C that will not fit with any S at either adjacent position (or with G at the thirteenth position), then that piece cannot be part of the final picture and can be thrown away. This test is applied to all positions, so reducing the number of pieces that need to be considered when it comes to the final (combinatorial) assembly stage.

Taylor, W. (1992) Nature 356, 478-480.

c) Combinatorial approach

Dead-end elimination (DEE) method

Algorithm of dead-end elimination (Desmet et al. Nature, 356, 539-542, 1992) Structural energy for side-chains of N-residues is described by the interaction energy between the backbone and the side-chain, E_1 , and the interaction energy between the side-chains, E_2 .

c (r1, r2,, rN) =
$$\sum E_1$$
 (ri) + $\sum \sum E_2$ (ri, sj) (1)
i i < j

Theorem: When the t'th rotamer (t_i) of the i'th residue is found, satisfying the next equation for the r'th rotamer (r_i) of the i'th residue, then the global energy minimum conformation does not include the r_i .

 $E_{1}(ri) + \sum_{i \neq j} \min_{s} \{E_{2}(ri, sj)\} > E_{1}(ti) + \sum_{i \neq j} \max_{s} \{E_{2}(ti, sj)\}$ (2)

Using the above theorem, it is possible to find the global energy minimum conformation, gradually rejecting the non-probable side-chain structures that cannot be included in the global energy minimum conformation.

b) Result of DEE for lysozyme. Blue: X-ray crystal structure, Yellow: DEE model structure, white: the coincident side-chain structures in between the crystal and the DEE model.

R. Tanimura et al. Protein Science, *3*, 2358-2365, 1994

- 1) Introduction
- 2) Search for homolog(s)
- 3) Threading (3D-1D compatibility)
- 4) Backbone modeling
- 5) Side-chain modeling
- 6) Structure optimization

Stress in the 3D structural model is removed by Minimization/MD with the potential energy U.

Force Fields

 $U = \sum_{\text{hords}} \frac{1}{2} k_r (r - r_0)^2$ Bond stretches (1-2) 1-4 $+\sum_{angles}\frac{1}{2}k_{\theta}(\theta-\theta_{0})^{2}$ Angle bending (1-3) 1-3 1-2 + $\sum_{n \to \infty} \frac{V_n}{2} [1 + \cos(n\phi - \delta)]$ Torsional rotation (1-4) + $\sum V(improper \ torsion)$ Improper torsion (1-4) improper $+\sum_{elec}\frac{q_iq_j}{r_{ii}}$ Electrostatic interaction (1-5) $+\sum_{I,I} \left[\frac{A_{ij}}{r_{ii}^{12}} - \frac{B_{ij}}{r_{ii}^{6}}\right]$ Lennard-Jones interaction (1-5)

Web site for homology modeling

http://swissmodel.expasy.org/

http://salilab.org/modeller/

Spanner is a structural homology modeling program-that is, it threads a specific amino-acid sequence onto a specific PDB structure, patching up the gaps as best it can.

To create a model, you must provide a template structure, as well as an alignment of the sequence you wish to model onto the template sequence. Spanner will replace matching residues, fill any gaps caused by inserted or deleted residues, and thermodynamically optimize the resulting structure.

The resulting PDB, as well as a log file, will be emailed to you when the modeling task finishes. If an error prevented a homology model from being generated (for example, when the alignment you provided does not match the template structure), the log file will explain which part of the modeling sequence failed.

Template PDB structure (PDB format): ファイルを選択 ファイルが選…ていません

Sequence alignment (FASTA format; first sequence is the template, second sequence is the query): (ファイルを選択)ファイルが選…ていません

Model: (not necessary if PDB file contains only one model)

Chain: (not necessary if PDB file contains only one chain)

Email address for results:

START!

© 2008-2009 Massachusetts Institute of Technology and Osaka University

New! Spanner

http://www.pdbj.org/spanner/ **Constructed by** Daron M. Standley (iFREC, Osaka U), Mieszko Lis (MIT), Haruki Nakamura (IPR, Osaka U)